

Laravel 5 Official Documentation
Synced daily. A free ebook version of the Laravel 5.x
Official Documentation.

Gary Blankenship

This book is for sale at http://leanpub.com/laravel-5

This version was published on 2017-01-24

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

http://leanpub.com/laravel-5
http://leanpub.com/
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

Tweet This Book!
Please help Gary Blankenship by spreading the word about this book on Twitter!

The suggested hashtag for this book is #laravel.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#laravel

http://twitter.com
https://twitter.com/search?q=%23laravel
https://twitter.com/search?q=%23laravel

Contents

Contribution Guidelines . 2

Release Notes . 5
Support Policy . 5
Laravel 5.3 {#releases-laravel-5.3} . 5
Laravel 5.2 {#releases-laravel-5.2} . 13
Laravel 5.1.11 {#releases-laravel-5.1.11} . 17
Laravel 5.1.4 {#releases-laravel-5.1.4} . 17
Laravel 5.1 {#releases-laravel-5.1} . 17
Laravel 5.0 {#releases-laravel-5.0} . 21
Laravel 4.2 . 29
Laravel 4.1 . 31

Upgrade Guide . 33
Upgrading To 5.4.0 From 5.3 {#upgrade-upgrade-5.4.0} . 33
Upgrading To 5.3.0 From 5.2 {#upgrade-upgrade-5.3.0} . 34
Upgrading To 5.2.0 From 5.1 {#upgrade-upgrade-5.2.0} . 51
Upgrading To 5.1.11 {#upgrade-upgrade-5.1.11} . 59
Upgrading To 5.1.0 {#upgrade-upgrade-5.1.0} . 61
Upgrading To 5.0.16 {#upgrade-upgrade-5.0.16} . 66
Upgrading To 5.0 From 4.2 {#upgrade-upgrade-5.0} . 67
Upgrading To 4.2 From 4.1 . 73
Upgrading To 4.1.29 From <= 4.1.x . 75
Upgrading To 4.1.26 From <= 4.1.25 . 75
Upgrading To 4.1 From 4.0 . 76

Contribution Guide . 79
Bug Reports . 79
Core Development Discussion . 80
Which Branch? . 80
Security Vulnerabilities . 81
Coding Style . 81

Installation . 82

CONTENTS

Installation . 82

Configuration . 85
Introduction . 85
Accessing Configuration Values . 85
Environment Configuration . 85
Configuration Caching . 87
Maintenance Mode . 87

Directory Structure . 89
Introduction . 89
The Root Directory . 89
The App Directory . 91

Errors & Logging . 94
Introduction . 94
Configuration . 94
The Exception Handler . 96
HTTP Exceptions . 98
Logging . 98

Laravel Homestead . 101
Introduction . 101
Installation & Setup . 102
Daily Usage . 106
Network Interfaces . 109

Laravel Valet . 110
Introduction . 110
Installation . 111
Serving Sites . 112
Sharing Sites . 113
Viewing Logs . 113
Custom Valet Drivers . 113
Other Valet Commands . 116

Service Container . 117
Introduction . 117
Binding . 118
Resolving . 122
Container Events . 123

Service Providers . 125
Introduction . 125
Writing Service Providers . 125

CONTENTS

Registering Providers . 128
Deferred Providers . 128

Facades . 130
Introduction . 130
When To Use Facades . 130
How Facades Work . 133
Facade Class Reference . 135

Contracts . 138
Introduction . 138
When To Use Contracts . 139
How To Use Contracts . 141
Contract Reference . 142

Routing . 145
Basic Routing . 145
Route Parameters . 146
Named Routes . 149
Route Groups . 150
Route Model Binding . 151
Form Method Spoofing . 153
Accessing The Current Route . 154

Middleware . 155
Introduction . 155
Defining Middleware . 155
Registering Middleware . 158
Middleware Parameters . 160
Terminable Middleware . 161

CSRF Protection . 163
Introduction . 163
Excluding URIs From CSRF Protection . 163
X-CSRF-TOKEN . 164
X-XSRF-TOKEN . 165

Controllers . 166
Introduction . 166
Basic Controllers . 166
Controller Middleware . 168
Resource Controllers . 169
Dependency Injection & Controllers . 172
Route Caching . 174

CONTENTS

Request Lifecycle . 176
Introduction . 176
Lifecycle Overview . 176
Focus On Service Providers . 177

HTTP Requests . 178
Accessing The Request . 178
Retrieving Input . 181

HTTP Responses . 189
Creating Responses . 189
Redirects . 191
Other Response Types . 194
Response Macros . 196

HTTP Redirects . 198
Creating Redirects . 198
Redirecting To Named Routes . 198
Redirecting To Controller Actions . 200
Redirecting With Flashed Session Data . 200

HTTP Session . 202
Introduction . 202
Using The Session . 203
Adding Custom Session Drivers . 208

Validation . 211
Introduction . 211
Validation Quickstart . 211
Form Request Validation . 216
Manually Creating Validators . 219
Working With Error Messages . 221
Available Validation Rules . 224
Conditionally Adding Rules . 233
Validating Arrays . 235
Custom Validation Rules . 235

Views . 239
Creating Views . 239
Passing Data To Views . 240
View Composers . 241

Blade Templates . 245
Introduction . 245
Template Inheritance . 245

CONTENTS

Displaying Data . 247
Control Structures . 249
Including Sub-Views . 253
Stacks . 254
Service Injection . 254
Extending Blade . 255

Localization . 257
Introduction . 257
Retrieving Language Lines . 258
Overriding Package Language Files . 260

JavaScript & CSS . 261
Introduction . 261
Writing CSS . 261
Writing JavaScript . 262

Compiling Assets (Laravel Elixir) . 264
Introduction . 264
Installation & Setup . 264
Running Elixir . 266
Working With Stylesheets . 266
Working With Scripts . 270
Copying Files & Directories . 272
Versioning / Cache Busting . 272
BrowserSync . 273

Authentication . 275
Introduction . 275
Authentication Quickstart . 276
Manually Authenticating Users . 280
HTTP Basic Authentication . 284
Adding Custom Guards . 286
Adding Custom User Providers . 287
Events . 290

Authorization . 292
Introduction . 292
Gates . 292
Creating Policies . 294
Writing Policies . 295
Authorizing Actions Using Policies . 297

Resetting Passwords . 302

CONTENTS

Introduction . 302
Database Considerations . 302
Routing . 303
Views . 303
After Resetting Passwords . 303
Customization . 304

API Authentication (Passport) . 306
Introduction . 306
Installation . 306
Configuration . 310
Issuing Access Tokens . 311
Password Grant Tokens . 316
Implicit Grant Tokens . 317
Personal Access Tokens . 318
Protecting Routes . 321
Token Scopes . 322
Consuming Your API With JavaScript . 324
Events . 325

Encryption . 327
Introduction . 327
Configuration . 327
Using The Encrypter . 327

Hashing . 329
Introduction . 329
Basic Usage . 329

Event Broadcasting . 331
Introduction . 331
Concept Overview . 334
Defining Broadcast Events . 336
Authorizing Channels . 339
Broadcasting Events . 340
Receiving Broadcasts . 342
Presence Channels . 344
Notifications . 346

Cache . 348
Configuration . 348
Cache Usage . 350
Cache Tags . 354
Adding Custom Cache Drivers . 356

CONTENTS

Events . 358

Events . 360
Introduction . 360
Registering Events & Listeners . 360
Defining Events . 362
Defining Listeners . 363
Queued Event Listeners . 364
Firing Events . 365
Event Subscribers . 366

Filesystem / Cloud Storage . 369
Introduction . 369
Configuration . 369
Obtaining Disk Instances . 372
Retrieving Files . 372
Storing Files . 373
Deleting Files . 377
Directories . 378
Custom Filesystems . 379

Mail . 381
Introduction . 381
Generating Mailables . 383
Writing Mailables . 383
Sending Mail . 390
Mail & Local Development . 393
Events . 393

Notifications . 395
Introduction . 395
Creating Notifications . 395
Sending Notifications . 396
Mail Notifications . 398
Database Notifications . 402
Broadcast Notifications . 404
SMS Notifications . 406
Slack Notifications . 408
Notification Events . 412
Custom Channels . 413

Queues . 415
Introduction . 415
Creating Jobs . 417

CONTENTS

Dispatching Jobs . 418
Running The Queue Worker . 422
Supervisor Configuration . 425
Dealing With Failed Jobs . 426
Job Events . 430

Database: Getting Started . 432
Introduction . 432
Running Raw SQL Queries . 434
Database Transactions . 437

Database: Query Builder . 439
Introduction . 439
Retrieving Results . 439
Selects . 442
Raw Expressions . 443
Joins . 443
Unions . 445
Where Clauses . 445
Ordering, Grouping, Limit, & Offset . 451
Conditional Clauses . 453
Inserts . 454
Updates . 455
Deletes . 456
Pessimistic Locking . 457

Pagination . 458
Introduction . 458
Basic Usage . 458
Displaying Pagination Results . 460
Customizing The Pagination View . 463
Paginator Instance Methods . 463

Database: Migrations . 464
Introduction . 464
Generating Migrations . 464
Migration Structure . 465
Running Migrations . 466
Tables . 468
Columns . 469
Indexes . 473

Database: Seeding . 477
Introduction . 477

CONTENTS

Writing Seeders . 477
Running Seeders . 479

Redis . 480
Introduction . 480
Interacting With Redis . 482
Pub / Sub . 484

Eloquent: Getting Started . 487
Introduction . 487
Defining Models . 487
Retrieving Models . 491
Retrieving Single Models / Aggregates . 493
Inserting & Updating Models . 494
Deleting Models . 499
Query Scopes . 503
Events . 508

Eloquent: Relationships . 512
Introduction . 512
Defining Relationships . 512
Querying Relations . 528
Eager Loading . 532
Inserting & Updating Related Models . 535
Touching Parent Timestamps . 539

Eloquent: Collections . 541
Introduction . 541
Available Methods . 542
Custom Collections . 542

Eloquent: Mutators . 544
Introduction . 544
Accessors & Mutators . 544
Date Mutators . 546
Attribute Casting . 548

Eloquent: Serialization . 551
Introduction . 551
Serializing Models & Collections . 551
Hiding Attributes From JSON . 552
Appending Values To JSON . 554

Console Commands . 556
Introduction . 556

CONTENTS

Writing Commands . 556
Defining Input Expectations . 560
Command I/O . 563
Registering Commands . 567
Programatically Executing Commands . 568

Task Scheduling . 570
Introduction . 570
Defining Schedules . 570
Task Output . 574
Task Hooks . 575

Testing . 577
Introduction . 577
Environment . 577
Creating & Running Tests . 577

Application Testing . 579
Introduction . 579
Interacting With Your Application . 580

Database Testing . 589
Introduction . 589
Resetting The Database After Each Test . 589
Writing Factories . 591
Using Factories . 592

Mocking . 596
Introduction . 596
Events . 596
Jobs . 599
Mail Fakes . 601
Notification Fakes . 602
Facades . 603

Laravel Cashier . 605
Introduction . 605
Configuration . 605
Subscriptions . 610
Subscription Trials . 616
Handling Stripe Webhooks . 618
Handling Braintree Webhooks . 620
Single Charges . 622
Invoices . 623

CONTENTS

Envoy Task Runner . 625
Introduction . 625
Writing Tasks . 626
Running Tasks . 629

API Authentication (Passport) . 631
Introduction . 631
Installation . 631
Configuration . 635
Issuing Access Tokens . 636
Password Grant Tokens . 641
Implicit Grant Tokens . 642
Personal Access Tokens . 643
Protecting Routes . 646
Token Scopes . 647
Consuming Your API With JavaScript . 649
Events . 650

Laravel Scout . 652
Introduction . 652
Installation . 652
Configuration . 654
Indexing . 655
Searching . 658
Custom Engines . 660

Collections . 662
Introduction . 662
Available Methods . 663
Method Listing . 663

Helper Functions . 700
Introduction . 700
Available Methods . 700
Method Listing . 701
Arrays . 701
Paths . 709
Strings . 711
URLs . 716
Miscellaneous . 718

Package Development . 727
Introduction . 727
Service Providers . 727

CONTENTS

Routing . 728
Resources . 728
Commands . 733
Public Assets . 733
Publishing File Groups . 734

CONTENTS 1

The MIT License (MIT) Copyright © Taylor Otwell

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Softwarewithout restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM,OUTOFOR INCONNECTIONWITHTHE SOFTWAREORTHEUSEOROTHER
DEALINGS IN THE SOFTWARE.

Contribution Guidelines
If you are submitting documentation for the current stable release, submit it to the corresponding
branch. For example, documentation for Laravel 5.1 would be submitted to the 5.1 branch.
Documentation intended for the next release of Laravel should be submitted to the master branch.

• Prologue
– Release Notes
– Upgrade Guide
– Contribution Guide
– API Documentation¹

• Getting Started
– Installation
– Configuration
– Directory Structure
– Errors & Logging

• Dev Environments
– Homestead
– Valet

• Core Concepts
– Service Container
– Service Providers
– Facades
– Contracts

• The HTTP Layer
– Routing
– Middleware
– CSRF Protection
– Controllers
– Requests
– Responses
– Session
– Validation

• Views & Templates
– Views
– Blade Templates
– Localization

¹/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax

Contribution Guidelines 3

• JavaScript & CSS
– Getting Started
– Compiling Assets

• Security
– Authentication
– Authorization
– Password Reset
– API Authentication
– Encryption
– Hashing

• General Topics
– Broadcasting
– Cache
– Events
– File Storage
– Mail
– Notifications
– Queues

• Database
– Getting Started
– Query Builder
– Pagination
– Migrations
– Seeding
– Redis

• Eloquent ORM
– Getting Started
– Relationships
– Collections
– Mutators
– Serialization

• Artisan Console
– Commands
– Task Scheduling

• Testing
– Getting Started
– Application Testing
– Database
– Mocking

• Official Packages
– Cashier
– Envoy

Contribution Guidelines 4

– Passport
– Scout
– Socialite²

• Appendix
– Collections
– Helpers
– Packages

²https://github.com/laravel/socialite

https://github.com/laravel/socialite
https://github.com/laravel/socialite

Release Notes
• Support Policy
• Laravel 5.3
• Laravel 5.2
• Laravel 5.1.11
• Laravel 5.1.4
• Laravel 5.1
• Laravel 5.0
• Laravel 4.2
• Laravel 4.1

Support Policy

For LTS releases, such as Laravel 5.1, bug fixes are provided for 2 years and security fixes are provided
for 3 years. These releases provide the longest window of support and maintenance. For general
releases, bug fixes are provided for 6 months and security fixes are provided for 1 year.

Laravel 5.3 {#releases-laravel-5.3}

Laravel 5.3 continues the improvements made in Laravel 5.2 by adding a driver based notification
system, robust realtime support via Laravel Echo, painless OAuth2 servers via Laravel Passport,
full-text model searching via Laravel Scout, Webpack support in Laravel Elixir, “mailable” objects,
explicit separation of web and api routes, Closure based console commands, convenient helpers for
storing uploaded files, support for POPO and single-action controllers, improved default frontend
scaffolding, and more.

Notifications

{video} There is a free video tutorial³ for this feature available on Laracasts.

Laravel Notifications provide a simple, expressive API for sending notifications across a variety of
delivery channels such as email, Slack, SMS, and more. For example, you may define a notification
that an invoice has been paid and deliver that notification via email and SMS. Then, you may send
the notification using a single, simple method:

³https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/9

https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/9
https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/9

Release Notes 6

1 $user->notify(new InvoicePaid($invoice));

There is already a wide variety of community written drivers⁴ for notifications, including support
for iOS and Android notifications. To learn more about notifications, be sure to check out the full
notification documentation.

WebSockets / Event Broadcasting

While event broadcasting existed in previous versions of Laravel, the Laravel 5.3 release greatly
improves this feature of the framework by adding channel-level authentication for private and
presence WebSocket channels:

1 /*

2 * Authenticate the channel subscription...

3 */

4 Broadcast::channel('orders.*', function ($user, $orderId) {

5 return $user->placedOrder($orderId);

6 });

Laravel Echo, a new JavaScript package installable via NPM, has also been released to provide a
simple, beautiful API for subscribing to channels and listening for your server-side events in your
client-side JavaScript application. Echo includes support for Pusher⁵ and Socket.io⁶:

1 Echo.channel('orders.' + orderId)

2 .listen('ShippingStatusUpdated', (e) => {

3 console.log(e.description);

4 });

In addition to subscribing to traditional channels, Laravel Echo also makes it a breeze to subscribe
to presence channels which provide information about who is listening on a given channel:

⁴http://laravel-notification-channels.com
⁵https://pusher.com
⁶http://socket.io

http://laravel-notification-channels.com/
https://pusher.com/
http://socket.io/
http://laravel-notification-channels.com/
https://pusher.com/
http://socket.io/

Release Notes 7

1 Echo.join('chat.' + roomId)

2 .here((users) => {

3 //

4 })

5 .joining((user) => {

6 console.log(user.name);

7 })

8 .leaving((user) => {

9 console.log(user.name);

10 });

To learn more about Echo and event broadcasting, check out the full documentation.

Laravel Passport (OAuth2 Server)

{video} There is a free video tutorial⁷ for this feature available on Laracasts.

Laravel 5.3 makes API authentication a breeze using Laravel Passport, which provides a full OAuth2
server implementation for your Laravel application in a matter of minutes. Passport is built on top
of the League OAuth2 server⁸ that is maintained by Alex Bilbie.

Passport makes it painless to issue access tokens via OAuth2 authorization codes. Youmay also allow
your users to create “personal access tokens” via your web UI. To get you started quickly, Passport
includes Vue components⁹ that can serve as a starting point for your OAuth2 dashboard, allowing
users to create clients, revoke access tokens, and more:

1 <passport-clients></passport-clients>

2 <passport-authorized-clients></passport-authorized-clients>

3 <passport-personal-access-tokens></passport-personal-access-tokens>

If you do not want to use the Vue components, you are welcome to provide your own frontend
dashboard for managing clients and access tokens. Passport exposes a simple JSON API that you
may use with any JavaScript framework you choose.

Of course, Passport also makes it simple to define access token scopes that may be requested by
application’s consuming your API:

⁷https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/13
⁸https://github.com/thephpleague/oauth2-server
⁹https://vuejs.org

https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/13
https://github.com/thephpleague/oauth2-server
https://vuejs.org/
https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/13
https://github.com/thephpleague/oauth2-server
https://vuejs.org/

Release Notes 8

1 Passport::tokensCan([

2 'place-orders' => 'Place new orders',

3 'check-status' => 'Check order status',

4]);

In addition, Passport includes helpful middleware for verifying that an access token authenticated
request contains the necessary token scopes:

1 Route::get('/orders/{order}/status', function (Order $order) {

2 // Access token has "check-status" scope...

3 })->middleware('scope:check-status');

Lastly, Passport includes support for consuming your own API from your JavaScript application
without worrying about passing access tokens. Passport achieves this through encrypted JWT
cookies and synchronized CSRF tokens, allowing you to focus on what matters: your application.
For more information on Passport, be sure to check out its full documentation.

Search (Laravel Scout)

Laravel Scout provides a simple, driver based solution for adding full-text search to your Eloquent
models. Using model observers, Scout will automatically keep your search indexes in sync with your
Eloquent records. Currently, Scout ships with an Algolia¹⁰ driver; however, writing custom drivers
is simple and you are free to extend Scout with your own search implementations.

Making models searchable is as simple as adding a Searchable trait to the model:

1 <?php

2

3 namespace App;

4

5 use Laravel\Scout\Searchable;

6 use Illuminate\Database\Eloquent\Model;

7

8 class Post extends Model

9 {

¹⁰https://www.algolia.com/

https://www.algolia.com/
https://www.algolia.com/

Release Notes 9

10 use Searchable;

11 }

Once the trait has been added to your model, its information will be kept in sync with your search
indexes by simply saving the model:

1 $order = new Order;

2

3 // ...

4

5 $order->save();

Once your models have been indexed, its a breeze to perform full-text searches across all of your
models. You may even paginate your search results:

1 return Order::search('Star Trek')->get();

2

3 return Order::search('Star Trek')->where('user_id', 1)->paginate();

Of course, Scout has many more features which are covered in the full documentation.

Mailable Objects

{video} There is a free video tutorial¹¹ for this feature available on Laracasts.

Laravel 5.3 ships with support for mailable objects. These objects allow you to represent your email
messages as a simple objects instead of customizing mail messages within Closures. For example,
you may define a simple mailable object for a “welcome” email:

1 class WelcomeMessage extends Mailable

2 {

3 use Queueable, SerializesModels;

4

5 /**

6 * Build the message.

¹¹https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/6

https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/6
https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/6

Release Notes 10

7 *

8 * @return $this

9 */

10 public function build()

11 {

12 return $this->view('emails.welcome');

13 }

14 }

Once the mailable object has been defined, you can send it to a user using a simple, expressive API.
Mailable objects are great for discovering the intent of your messages while scanning your code:

1 Mail::to($user)->send(new WelcomeMessage);

Of course, you may also mark mailable objects as “queueable” so that they will be sent in the
background by your queue workers:

1 class WelcomeMessage extends Mailable implements ShouldQueue

2 {

3 //

4 }

For more information on mailable objects, be sure to check out the mail documentation.

Storing Uploaded Files

{video} There is a free video tutorial¹² for this feature available on Laracasts.

In web applications, one of the most common use-cases for storing files is storing user uploaded files
such as profile pictures, photos, and documents. Laravel 5.3 makes it very easy to store uploaded files
using the new store method on an uploaded file instance. Simply call the store method with the
path at which you wish to store the uploaded file:

¹²https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/12

https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/12
https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/12

Release Notes 11

1 /**

2 * Update the avatar for the user.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function update(Request $request)

8 {

9 $path = $request->file('avatar')->store('avatars', 's3');

10

11 return $path;

12 }

For more information on storing uploaded files, check out the full documentation.

Webpack & Laravel Elixir

Along with Laravel 5.3, Laravel Elixir 6.0 has been released with baked-in support for the Webpack
and Rollup JavaScript module bundlers. By default, the Laravel 5.3 gulpfile.js file now uses Web-
pack to compile your JavaScript. The full Laravel Elixir documentation contains more information
on both of these bundlers:

1 elixir(mix => {

2 mix.sass('app.scss')

3 .webpack('app.js');

4 });

Frontend Structure

{video} There is a free video tutorial¹³ for this feature available on Laracasts.

Laravel 5.3 ships with a more modern frontend structure. This primarily affects the make:auth

authentication scaffolding. Instead of loading frontend assets from a CDN, dependencies are
specified in the default package.json file.

In addition, support for single file Vue components¹⁴ is now included out of the box. A sample Ex-
ample.vue component is included in the resources/assets/js/components directory. In addition,

¹³https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/4
¹⁴https://vuejs.org

https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/4
https://vuejs.org/
https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/4
https://vuejs.org/

Release Notes 12

the new resources/assets/js/app.js file bootstraps and configures your JavaScript libraries and,
if applicable, Vue components.

This structure provides more guidance on how to begin developing modern, robust JavaScript
applications, without requiring your application to use any given JavaScript or CSS framework.
For more information on getting started with modern Laravel frontend development, check out the
new introductory frontend documentation.

Routes Files

By default, fresh Laravel 5.3 applications contain two HTTP route files in a new top-level routes
directory. The web and api route files provide more explicit guidance in how to split the routes for
your web interface and your API. The routes in the api route file are automatically assigned the api
prefix by the RouteServiceProvider.

Closure Console Commands

In addition to being defined as command classes, Artisan commands may now be defined as
simple Closures in the commands method of your app/Console/Kernel.php file. In fresh Laravel
5.3 applications, the commands method loads a routes/console.php file which allows you to define
your Console commands as route-like, Closure based entry points into your application:

1 Artisan::command('build {project}', function ($project) {

2 $this->info('Building project...');

3 });

For more information on Closure commands, check out the full Artisan documentation.

The $loop Variable

{video} There is a free video tutorial¹⁵ for this feature available on Laracasts.

When looping within a Blade template, a $loop variable will be available inside of your loop. This
variable provides access to some useful bits of information such as the current loop index and
whether this is the first or last iteration through the loop:

¹⁵https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/7

https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/7
https://laracasts.com/series/whats-new-in-laravel-5-3/episodes/7

Release Notes 13

1 @foreach ($users as $user)

2 @if ($loop->first)

3 This is the first iteration.

4 @endif

5

6 @if ($loop->last)

7 This is the last iteration.

8 @endif

9

10 <p>This is user {{ $user->id }}</p>

11 @endforeach

For more information, consult the full Blade documentation.

Laravel 5.2 {#releases-laravel-5.2}

Laravel 5.2 continues the improvementsmade in Laravel 5.1 by addingmultiple authentication driver
support, implicit model binding, simplified Eloquent global scopes, opt-in authentication scaffolding,
middleware groups, rate limiting middleware, array validation improvements, and more.

Authentication Drivers / “Multi-Auth”

In previous versions of Laravel, only the default, session-based authentication driver was supported
out of the box, and you could not havemore than one authenticatablemodel instance per application.

However, in Laravel 5.2, you may define additional authentication drivers as well define multiple
authenticatable models or user tables, and control their authentication process separately from each
other. For example, if your application has one database table for “admin” users and one database
table for “student” users, you may now use the Auth methods to authenticate against each of these
tables separately.

Authentication Scaffolding

Laravel already makes it easy to handle authentication on the back-end; however, Laravel 5.2
provides a convenient, lightning-fast way to scaffold the authentication views for your front-end.
Simply execute the make:auth command on your terminal:

Release Notes 14

1 php artisan make:auth

This command will generate plain, Bootstrap compatible views for user login, registration, and
password reset. The command will also update your routes file with the appropriate routes.

{note} This feature is only meant to be used on new applications, not during application
upgrades.

Implicit Model Binding

Implicit model binding makes it painless to inject relevant models directly into your routes and
controllers. For example, assume you have a route defined like the following:

1 use App\User;

2

3 Route::get('/user/{user}', function (User $user) {

4 return $user;

5 });

In Laravel 5.1, you would typically need to use the Route::model method to instruct Laravel to
inject the App\User instance that matches the {user} parameter in your route definition. However, in
Laravel 5.2, the framework will automatically inject this model based on the URI segment, allowing
you to quickly gain access to the model instances you need.

Laravel will automatically inject the model when the route parameter segment ({user}) matches
the route Closure or controller method’s corresponding variable name ($user) and the variable is
type-hinting an Eloquent model class.

Middleware Groups

Middleware groups allow you to group several route middleware under a single, convenient key,
allowing you to assign several middleware to a route at once. For example, this can be useful when
building a web UI and an API within the same application. You may group the session and CSRF
routes into a web group, and perhaps the rate limiter in the api group.

In fact, the default Laravel 5.2 application structure takes exactly this approach. For example, in the
default App\Http\Kernel.php file you will find the following:

Release Notes 15

1 /**

2 * The application's route middleware groups.

3 *

4 * @var array

5 */

6 protected $middlewareGroups = [

7 'web' => [

8 \App\Http\Middleware\EncryptCookies::class,

9 \Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

10 \Illuminate\Session\Middleware\StartSession::class,

11 \Illuminate\View\Middleware\ShareErrorsFromSession::class,

12 \App\Http\Middleware\VerifyCsrfToken::class,

13],

14

15 'api' => [

16 'throttle:60,1',

17],

18];

Then, the web group may be assigned to routes like so:

1 Route::group(['middleware' => ['web']], function () {

2 //

3 });

However, keep in mind the webmiddleware group is already applied to your routes by default since
the RouteServiceProvider includes it in the default middleware group.

Rate Limiting

A new rate limiter middleware is now included with the framework, allowing you to easily limit the
number of requests that a given IP address can make to a route over a specified number of minutes.
For example, to limit a route to 60 requests every minute from a single IP address, you may do the
following:

Release Notes 16

1 Route::get('/api/users', ['middleware' => 'throttle:60,1', function () {

2 //

3 }]);

Array Validation

Validating array form input fields is much easier in Laravel 5.2. For example, to validate that each
e-mail in a given array input field is unique, you may do the following:

1 $validator = Validator::make($request->all(), [

2 'person.*.email' => 'email|unique:users'

3]);

Likewise, you may use the * character when specifying your validation messages in your language
files, making it a breeze to use a single validation message for array based fields:

1 'custom' => [

2 'person.*.email' => [

3 'unique' => 'Each person must have a unique e-mail address',

4]

5],

Bail Validation Rule

A new bail validation rule has been added, which instructs the validator to stop validating after
the first validation failure for a given rule. For example, you may now prevent the validator from
running a unique check if an attribute fails an integer check:

1 $this->validate($request, [

2 'user_id' => 'bail|integer|unique:users'

3]);

Release Notes 17

Eloquent Global Scope Improvements

In previous versions of Laravel, global Eloquent scopes were complicated and error-prone to
implement; however, in Laravel 5.2, global query scopes only require you to implement a single,
simple method: apply.

For more information on writing global scopes, check out the full Eloquent documentation.

Laravel 5.1.11 {#releases-laravel-5.1.11}

Laravel 5.1.11 introduces authorization support out of the box! Conveniently organize your appli-
cation’s authorization logic using simple callbacks or policy classes, and authorize actions using
simple, expressive methods.

For more information, please refer to the authorization documentation.

Laravel 5.1.4 {#releases-laravel-5.1.4}

Laravel 5.1.4 introduces simple login throttling to the framework. Consult the authentication
documentation for more information.

Laravel 5.1 {#releases-laravel-5.1}

Laravel 5.1 continues the improvements made in Laravel 5.0 by adopting PSR-2 and adding event
broadcasting, middleware parameters, Artisan improvements, and more.

PHP 5.5.9+

Since PHP 5.4 will enter “end of life” in September and will no longer receive security updates from
the PHP development team, Laravel 5.1 requires PHP 5.5.9 or greater. PHP 5.5.9 allows compatibility
with the latest versions of popular PHP libraries such as Guzzle and the AWS SDK.

LTS

Laravel 5.1 is the first release of Laravel to receive long term support. Laravel 5.1 will receive bug
fixes for 2 years and security fixes for 3 years. This support window is the largest ever provided for
Laravel and provides stability and peace of mind for larger, enterprise clients and customers.

Release Notes 18

PSR-2

The PSR-2 coding style guide¹⁶ has been adopted as the default style guide for the Laravel framework.
Additionally, all generators have been updated to generate PSR-2 compatible syntax.

Documentation

Every page of the Laravel documentation has been meticulously reviewed and dramatically
improved. All code examples have also been reviewed and expanded to provide more relevance
and context.

Event Broadcasting

In many modern web applications, web sockets are used to implement realtime, live-updating user
interfaces. When some data is updated on the server, a message is typically sent over a websocket
connection to be handled by the client.

To assist you in building these types of applications, Laravel makes it easy to “broadcast” your events
over a websocket connection. Broadcasting your Laravel events allows you to share the same event
names between your server-side code and your client-side JavaScript framework.

To learn more about event broadcasting, check out the event documentation.

Middleware Parameters

Middleware can now receive additional custom parameters. For example, if your application needs
to verify that the authenticated user has a given “role” before performing a given action, you could
create a RoleMiddleware that receives a role name as an additional argument:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class RoleMiddleware

8 {

9 /**

10 * Run the request filter.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

¹⁶https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md

Release Notes 19

14 * @param string $role

15 * @return mixed

16 */

17 public function handle($request, Closure $next, $role)

18 {

19 if (! $request->user()->hasRole($role)) {

20 // Redirect...

21 }

22

23 return $next($request);

24 }

25

26 }

Middleware parameters may be specified when defining the route by separating the middleware
name and parameters with a :. Multiple parameters should be delimited by commas:

1 Route::put('post/{id}', ['middleware' => 'role:editor', function ($id) {

2 //

3 }]);

For more information on middleware, check out the middleware documentation.

Testing Overhaul

The built-in testing capabilities of Laravel have been dramatically improved. A variety of new
methods provide a fluent, expressive interface for interacting with your application and examining
its responses. For example, check out the following test:

1 public function testNewUserRegistration()

2 {

3 $this->visit('/register')

4 ->type('Taylor', 'name')

5 ->check('terms')

6 ->press('Register')

7 ->seePageIs('/dashboard');

8 }

Release Notes 20

For more information on testing, check out the testing documentation.

Model Factories

Laravel now ships with an easy way to create stub Eloquent models using model factories. Model
factories allow you to easily define a set of “default” attributes for your Eloquent model, and then
generate test model instances for your tests or database seeds. Model factories also take advantage
of the powerful Faker¹⁷ PHP library for generating random attribute data:

1 $factory->define(App\User::class, function ($faker) {

2 return [

3 'name' => $faker->name,

4 'email' => $faker->email,

5 'password' => str_random(10),

6 'remember_token' => str_random(10),

7];

8 });

For more information on model factories, check out the documentation.

Artisan Improvements

Artisan commands may now be defined using a simple, route-like “signature”, which provides an
extremely simple interface for defining command line arguments and options. For example, you
may define a simple command and its options like so:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user} {--force}';

For more information on defining Artisan commands, consult the Artisan documentation.

¹⁷https://github.com/fzaninotto/Faker

https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker

Release Notes 21

Folder Structure

To better express intent, the app/Commands directory has been renamed to app/Jobs. Additionally,
the app/Handlers directory has been consolidated into a single app/Listeners directory which
simply contains event listeners. However, this is not a breaking change and you are not required to
update to the new folder structure to use Laravel 5.1.

Encryption

In previous versions of Laravel, encryption was handled by the mcrypt PHP extension. However,
beginning in Laravel 5.1, encryption is handled by the openssl extension, which is more actively
maintained.

Laravel 5.0 {#releases-laravel-5.0}

Laravel 5.0 introduces a fresh application structure to the default Laravel project. This new structure
serves as a better foundation for building a robust application in Laravel, as well as embraces new
auto-loading standards (PSR-4) throughout the application. First, let’s examine some of the major
changes:

New Folder Structure

The old app/models directory has been entirely removed. Instead, all of your code lives directly
within the app folder, and, by default, is organized to the App namespace. This default namespace
can be quickly changed using the new app:name Artisan command.

Controllers, middleware, and requests (a new type of class in Laravel 5.0) are now grouped under the
app/Http directory, as they are all classes related to the HTTP transport layer of your application.
Instead of a single, flat file of route filters, all middleware are now broken into their own class files.

A new app/Providers directory replaces the app/start files from previous versions of Laravel
4.x. These service providers provide various bootstrapping functions to your application, such as
error handling, logging, route loading, and more. Of course, you are free to create additional service
providers for your application.

Application language files and views have been moved to the resources directory.

Contracts

Allmajor Laravel components implement interfaces which are located in the illuminate/contracts
repository. This repository has no external dependencies. Having a convenient, centrally located set
of interfaces you may use for decoupling and dependency injection will serve as an easy alternative
option to Laravel Facades.

For more information on contracts, consult the full documentation.

Release Notes 22

Route Cache

If your application is made up entirely of controller routes, you may utilize the new route:cache

Artisan command to drastically speed up the registration of your routes. This is primarily useful on
applications with 100+ routes and will drastically speed up this portion of your application.

Route Middleware

In addition to Laravel 4 style route “filters”, Laravel 5 now supports HTTP middleware, and
the included authentication and CSRF “filters” have been converted to middleware. Middleware
provides a single, consistent interface to replace all types of filters, allowing you to easily inspect,
and even reject, requests before they enter your application.

For more information on middleware, check out the documentation.

Controller Method Injection

In addition to the existing constructor injection, you may now type-hint dependencies on controller
methods. The service container will automatically inject the dependencies, even if the route contains
other parameters:

1 public function createPost(Request $request, PostRepository $posts)

2 {

3 //

4 }

Authentication Scaffolding

User registration, authentication, and password reset controllers are now included out of the box,
as well as simple corresponding views, which are located at resources/views/auth. In addition,
a “users” table migration has been included with the framework. Including these simple resources
allows rapid development of application ideas without bogging down on authentication boilerplate.
The authentication views may be accessed on the auth/login and auth/register routes. The
App\Services\Auth\Registrar service is responsible for user validation and creation.

Event Objects

You may now define events as objects instead of simply using strings. For example, check out the
following event:

Release Notes 23

1 <?php

2

3 class PodcastWasPurchased

4 {

5 public $podcast;

6

7 public function __construct(Podcast $podcast)

8 {

9 $this->podcast = $podcast;

10 }

11 }

The event may be dispatched like normal:

1 Event::fire(new PodcastWasPurchased($podcast));

Of course, your event handler will receive the event object instead of a list of data:

1 <?php

2

3 class ReportPodcastPurchase

4 {

5 public function handle(PodcastWasPurchased $event)

6 {

7 //

8 }

9 }

For more information on working with events, check out the full documentation.

Commands / Queueing

In addition to the queue job format supported in Laravel 4, Laravel 5 allows you to represent your
queued jobs as simple command objects. These commands live in the app/Commands directory. Here’s
a sample command:

Release Notes 24

1 <?php

2

3 class PurchasePodcast extends Command implements SelfHandling, ShouldBeQueued

4 {

5 use SerializesModels;

6

7 protected $user, $podcast;

8

9 /**

10 * Create a new command instance.

11 *

12 * @return void

13 */

14 public function __construct(User $user, Podcast $podcast)

15 {

16 $this->user = $user;

17 $this->podcast = $podcast;

18 }

19

20 /**

21 * Execute the command.

22 *

23 * @return void

24 */

25 public function handle()

26 {

27 // Handle the logic to purchase the podcast...

28

29 event(new PodcastWasPurchased($this->user, $this->podcast));

30 }

31 }

The base Laravel controller utilizes the new DispatchesCommands trait, allowing you to easily
dispatch your commands for execution:

1 $this->dispatch(new PurchasePodcastCommand($user, $podcast));

Of course, you may also use commands for tasks that are executed synchronously (are not queued).
In fact, using commands is a great way to encapsulate complex tasks your application needs to
perform. For more information, check out the command bus documentation.

Release Notes 25

Database Queue

A database queue driver is now included in Laravel, providing a simple, local queue driver that
requires no extra package installation beyond your database software.

Laravel Scheduler

In the past, developers have generated a Cron entry for each console command they wished to
schedule. However, this is a headache. Your console schedule is no longer in source control, and
you must SSH into your server to add the Cron entries. Let’s make our lives easier. The Laravel
command scheduler allows you to fluently and expressively define your command schedule within
Laravel itself, and only a single Cron entry is needed on your server.

It looks like this:

1 $schedule->command('artisan:command')->dailyAt('15:00');

Of course, check out the full documentation to learn all about the scheduler!

Tinker / Psysh

The php artisan tinker command now utilizes Psysh¹⁸ by Justin Hileman, a more robust REPL for
PHP. If you liked Boris in Laravel 4, you’re going to love Psysh. Even better, it works on Windows!
To get started, just try:

1 php artisan tinker

DotEnv

Instead of a variety of confusing, nested environment configuration directories, Laravel 5 now
utilizes DotEnv¹⁹ by Vance Lucas. This library provides a super simple way to manage your
environment configuration, andmakes environment detection in Laravel 5 a breeze. Formore details,
check out the full configuration documentation.

¹⁸https://github.com/bobthecow/psysh
¹⁹https://github.com/vlucas/phpdotenv

https://github.com/bobthecow/psysh
https://github.com/vlucas/phpdotenv
https://github.com/bobthecow/psysh
https://github.com/vlucas/phpdotenv

Release Notes 26

Laravel Elixir

Laravel Elixir, by JeffreyWay, provides a fluent, expressive interface to compiling and concatenating
your assets. If you’ve ever been intimidated by learning Grunt or Gulp, fear no more. Elixir makes it
a cinch to get started using Gulp to compile your Less, Sass, and CoffeeScript. It can even run your
tests for you!

For more information on Elixir, check out the full documentation.

Laravel Socialite

Laravel Socialite is an optional, Laravel 5.0+ compatible package that provides totally painless
authentication with OAuth providers. Currently, Socialite supports Facebook, Twitter, Google, and
GitHub. Here’s what it looks like:

1 public function redirectForAuth()

2 {

3 return Socialize::with('twitter')->redirect();

4 }

5

6 public function getUserFromProvider()

7 {

8 $user = Socialize::with('twitter')->user();

9 }

No more spending hours writing OAuth authentication flows. Get started in minutes! The full
documentation has all the details.

Flysystem Integration

Laravel now includes the powerful Flysystem²⁰ filesystem abstraction library, providing pain free
integration with local, Amazon S3, and Rackspace cloud storage - all with one, unified and elegant
API! Storing a file in Amazon S3 is now as simple as:

1 Storage::put('file.txt', 'contents');

For more information on the Laravel Flysystem integration, consult the full documentation.

²⁰https://github.com/thephpleague/flysystem

https://github.com/thephpleague/flysystem
https://github.com/thephpleague/flysystem

Release Notes 27

Form Requests

Laravel 5.0 introduces form requests, which extend the Illuminate\Foundation\Http\FormRequest
class. These request objects can be combined with controller method injection to provide a boiler-
plate free method of validating user input. Let’s dig in and look at a sample FormRequest:

1 <?php

2

3 namespace App\Http\Requests;

4

5 class RegisterRequest extends FormRequest

6 {

7 public function rules()

8 {

9 return [

10 'email' => 'required|email|unique:users',

11 'password' => 'required|confirmed|min:8',

12];

13 }

14

15 public function authorize()

16 {

17 return true;

18 }

19 }

Once the class has been defined, we can type-hint it on our controller action:

1 public function register(RegisterRequest $request)

2 {

3 var_dump($request->input());

4 }

When the Laravel service container identifies that the class it is injecting is a FormRequest instance,
the request will automatically be validated. This means that if your controller action is called, you
can safely assume the HTTP request input has been validated according to the rules you specified
in your form request class. Even more, if the request is invalid, an HTTP redirect, which you may
customize, will automatically be issued, and the error messages will be either flashed to the session
or converted to JSON. Form validation has never been more simple. For more information on
FormRequest validation, check out the documentation.

Release Notes 28

Simple Controller Request Validation

The Laravel 5 base controller now includes a ValidatesRequests trait. This trait provides a simple
validate method to validate incoming requests. If FormRequests are a little too much for your
application, check this out:

1 public function createPost(Request $request)

2 {

3 $this->validate($request, [

4 'title' => 'required|max:255',

5 'body' => 'required',

6]);

7 }

If the validation fails, an exception will be thrown and the proper HTTP response will automatically
be sent back to the browser. The validation errors will even be flashed to the session! If the request
was an AJAX request, Laravel even takes care of sending a JSON representation of the validation
errors back to you.

For more information on this new method, check out the documentation.

New Generators

To complement the new default application structure, new Artisan generator commands have been
added to the framework. See php artisan list for more details.

Configuration Cache

You may now cache all of your configuration in a single file using the config:cache command.

Symfony VarDumper

The popular dd helper function, which dumps variable debug information, has been upgraded to use
the amazing Symfony VarDumper. This provides color-coded output and even collapsing of arrays.
Just try the following in your project:

1 dd([1, 2, 3]);

Release Notes 29

Laravel 4.2

The full change list for this release by running the php artisan changes command from a
4.2 installation, or by viewing the change file on Github²¹. These notes only cover the major
enhancements and changes for the release.

{note} During the 4.2 release cycle, many small bug fixes and enhancements were
incorporated into the various Laravel 4.1 point releases. So, be sure to check the change
list for Laravel 4.1 as well!

PHP 5.4 Requirement

Laravel 4.2 requires PHP 5.4 or greater. This upgraded PHP requirement allows us to use new PHP
features such as traits to provide more expressive interfaces for tools like Laravel Cashier. PHP 5.4
also brings significant speed and performance improvements over PHP 5.3.

Laravel Forge

Laravel Forge, a new web based application, provides a simple way to create and manage PHP
servers on the cloud of your choice, including Linode, DigitalOcean, Rackspace, and Amazon EC2.
Supporting automatedNginx configuration, SSH key access, Cron job automation, servermonitoring
via NewRelic & Papertrail, “Push To Deploy”, Laravel queue worker configuration, and more, Forge
provides the simplest and most affordable way to launch all of your Laravel applications.

The default Laravel 4.2 installation’s app/config/database.php configuration file is now configured
for Forge usage by default, allowing for more convenient deployment of fresh applications onto the
platform.

More information about Laravel Forge can be found on the official Forge website²².

Laravel Homestead

Laravel Homestead is an official Vagrant environment for developing robust Laravel and PHP
applications. The vast majority of the boxes’ provisioning needs are handled before the box
is packaged for distribution, allowing the box to boot extremely quickly. Homestead includes
Nginx 1.6, PHP 5.6, MySQL, Postgres, Redis, Memcached, Beanstalk, Node, Gulp, Grunt, & Bower.
Homestead includes a simple Homestead.yaml configuration file for managing multiple Laravel
applications on a single box.

The default Laravel 4.2 installation now includes an app/config/local/database.php configuration
file that is configured to use the Homestead database out of the box, making Laravel initial
installation and configuration more convenient.

The official documentation has also been updated to include Homestead documentation.

²¹https://github.com/laravel/framework/blob/4.2/src/Illuminate/Foundation/changes.json
²²https://forge.laravel.com

https://github.com/laravel/framework/blob/4.2/src/Illuminate/Foundation/changes.json
https://forge.laravel.com/
https://github.com/laravel/framework/blob/4.2/src/Illuminate/Foundation/changes.json
https://forge.laravel.com/

Release Notes 30

Laravel Cashier

Laravel Cashier is a simple, expressive library for managing subscription billing with Stripe. With
the introduction of Laravel 4.2, we are including Cashier documentation alongwith themain Laravel
documentation, though installation of the component itself is still optional. This release of Cashier
brings numerous bug fixes, multi-currency support, and compatibility with the latest Stripe API.

Daemon Queue Workers

The Artisan queue:work command now supports a --daemon option to start a worker in “daemon
mode”, meaning the worker will continue to process jobs without ever re-booting the framework.
This results in a significant reduction in CPU usage at the cost of a slightly more complex application
deployment process.

More information about daemon queue workers can be found in the queue documentation.

Mail API Drivers

Laravel 4.2 introduces new Mailgun and Mandrill API drivers for the Mail functions. For many
applications, this provides a faster and more reliable method of sending e-mails than the SMTP
options. The new drivers utilize the Guzzle 4 HTTP library.

Soft Deleting Traits

A much cleaner architecture for “soft deletes” and other “global scopes” has been introduced via
PHP 5.4 traits. This new architecture allows for the easier construction of similar global traits, and
a cleaner separation of concerns within the framework itself.

More information on the new SoftDeletingTrait may be found in the Eloquent documentation.

Convenient Auth & Remindable Traits

The default Laravel 4.2 installation now uses simple traits for including the needed properties for the
authentication and password reminder user interfaces. This provides a much cleaner default User
model file out of the box.

“Simple Paginate”

A new simplePaginatemethod was added to the query and Eloquent builder which allows for more
efficient queries when using simple “Next” and “Previous” links in your pagination view.

Release Notes 31

Migration Confirmation

In production, destructive migration operations will now ask for confirmation. Commands may be
forced to run without any prompts using the --force command.

Laravel 4.1

Full Change List

The full change list for this release by running the php artisan changes command from a
4.1 installation, or by viewing the change file on Github²³. These notes only cover the major
enhancements and changes for the release.

New SSH Component

An entirely new SSH component has been introduced with this release. This feature allows you
to easily SSH into remote servers and run commands. To learn more, consult the SSH component
documentation.

The new php artisan tail command utilizes the new SSH component. For more information,
consult the tail command documentation²⁴.

Boris In Tinker

The php artisan tinker command now utilizes the Boris REPL²⁵ if your system supports it. The
readline and pcntl PHP extensions must be installed to use this feature. If you do not have these
extensions, the shell from 4.0 will be used.

Eloquent Improvements

A new hasManyThrough relationship has been added to Eloquent. To learn how to use it, consult the
Eloquent documentation.

A new whereHas method has also been introduced to allow retrieving models based on relationship
constraints.

Database Read / Write Connections

Automatic handling of separate read / write connections is now available throughout the database
layer, including the query builder and Eloquent. For more information, consult the documentation.

²³https://github.com/laravel/framework/blob/4.1/src/Illuminate/Foundation/changes.json
²⁴http://laravel.com/docs/ssh#tailing-remote-logs
²⁵https://github.com/d11wtq/boris

https://github.com/laravel/framework/blob/4.1/src/Illuminate/Foundation/changes.json
http://laravel.com/docs/ssh#tailing-remote-logs
https://github.com/d11wtq/boris
https://github.com/laravel/framework/blob/4.1/src/Illuminate/Foundation/changes.json
http://laravel.com/docs/ssh#tailing-remote-logs
https://github.com/d11wtq/boris

Release Notes 32

Queue Priority

Queue priorities are now supported by passing a comma-delimited list to the queue:listen

command.

Failed Queue Job Handling

The queue facilities now include automatic handling of failed jobs when using the new --tries

switch on queue:listen. More information on handling failed jobs can be found in the queue
documentation.

Cache Tags

Cache “sections” have been superseded by “tags”. Cache tags allow you to assign multiple “tags” to
a cache item, and flush all items assigned to a single tag. More information on using cache tags may
be found in the cache documentation.

Flexible Password Reminders

The password reminder engine has been changed to provide greater developer flexibility when
validating passwords, flashing status messages to the session, etc. For more information on using
the enhanced password reminder engine, consult the documentation.

Improved Routing Engine

Laravel 4.1 features a totally re-written routing layer. The API is the same; however, registering
routes is a full 100% faster compared to 4.0. The entire engine has been greatly simplified, and the
dependency on Symfony Routing has been minimized to the compiling of route expressions.

Improved Session Engine

With this release, we’re also introducing an entirely new session engine. Similar to the routing
improvements, the new session layer is leaner and faster. We are no longer using Symfony’s (and
therefore PHP’s) session handling facilities, and are using a custom solution that is simpler and
easier to maintain.

Doctrine DBAL

If you are using the renameColumn function in yourmigrations, youwill need to add the doctrine/d-
bal dependency to your composer.json file. This package is no longer included in Laravel by default.

Upgrade Guide
• Upgrading To 5.4.0 From 5.3
• Upgrading To 5.3.0 From 5.2
• Upgrading To 5.2.0 From 5.1
• Upgrading To 5.1.11
• Upgrading To 5.1.0
• Upgrading To 5.0.16
• Upgrading To 5.0 From 4.2
• Upgrading To 4.2 From 4.1
• Upgrading To 4.1.29 From <= 4.1.x
• Upgrading To 4.1.26 From <= 4.1.25
• Upgrading To 4.1 From 4.0

Upgrading To 5.4.0 From 5.3 {#upgrade-upgrade-5.4.0}

Estimated Upgrade Time: 10 Minutes

Authorization

Policy Class Determination

Policies may now be bound to an interface or parent class. When determining which policy to use
for a given object, a policy bound to the object’s exact

<div class=”content-list” markdown=”1”> - Each class has its own policy, as policies bound to exactly
the given class will be found before looking for subtypes - Or, bind your policy to the root of the
inheritance tree </div>

The getPolicyForMethod

Previous, when calling the Gate::getPolicyFor($class) method, an exception was thrown if no
policy could be found. Now, the method will return null if no policy is found for the given class. If
you call this method directly, make sure you refactor your try / catch to a check for null:

Upgrade Guide 34

1 $policy = Gate::getPolicyFor($class);

2

3 if ($policy) {

4 A> // code that was previously in the try block

5

6 } else {

7 A> // code that was previously in the catch block

8

9 }

Upgrading To 5.3.0 From 5.2 {#upgrade-upgrade-5.3.0}

Estimated Upgrade Time: 2-3 Hours

{note} We attempt to document every possible breaking change. Since some of these
breaking changes are in obscure parts of the framework only a portion of these changes
may actually affect your application.

Updating Dependencies

Update your laravel/framework dependency to 5.3.* in your composer.json file.

You should also upgrade your symfony/css-selector and symfony/dom-crawler dependencies to
3.1.* in the require-dev section of your composer.json file.

PHP & HHVM

Laravel 5.3 requires PHP 5.6.4 or higher. HHVM is no longer officially supported as it does not
contain the same language features as PHP 5.6+.

Deprecations

All of the deprecations listed in the Laravel 5.2 upgrade guide have been removed from the
framework. You should review this list to verify you are no longer using these deprecated features.

Application Service Providers

You may remove the arguments from the bootmethod on the EventServiceProvider, RouteServi-
ceProvider, and AuthServiceProvider classes. Any calls to the given arguments may be converted
to use the equivalent facade instead. So, for example, instead of calling methods on the $dispatcher
argument, you may simply call the Event facade. Likewise, instead of making method calls to the
$router argument, you may make calls to the Route facade, and instead of making method calls to
the $gate argument, you may make calls to the Gate facade.

Upgrade Guide 35

{note} When converting method calls to facades, be sure to import the facade class into
your service provider.

Arrays

Key / Value Order Change

The first, last, and where methods on the Arr class now pass the “value” as the first parameter to
the given callback Closure. For example:

1 Arr::first($array, function ($value, $key) {

2 return ! is_null($value);

3 });

In previous versions of Laravel, the $keywas passed first. Since most use cases are only interested in
the $value it is now passed first. You should do a “global find” in your application for these methods
to verify that you are expecting the $value to be passed as the first argument to your Closure.

Artisan

The make:console Command

The make:console command has been renamed to make:command.

Authentication

Authentication Scaffolding

The two default authentication controllers provided with the framework have been split into four
smaller controllers. This change provides cleaner, more focused authentication controllers by default.
The easiest way to upgrade your application to the new authentication controllers is to grab a fresh
copy of each controller from GitHub²⁶ and place them into your application.

You should also make sure that you are calling the Auth::routes()method in your routes/web.php
file. This method will register the proper routes for the new authentication controllers.

Once these controllers have been placed into your application, you may need to re-implement any
customizations youmade to these controllers. For example, if you are customizing the authentication
guard that is used for authentication, you may need to override the controller’s guard method. You
can examine each authentication controller’s trait to determine which methods to override.

²⁶https://github.com/laravel/laravel/tree/master/app/Http/Controllers/Auth

https://github.com/laravel/laravel/tree/master/app/Http/Controllers/Auth
https://github.com/laravel/laravel/tree/master/app/Http/Controllers/Auth
https://github.com/laravel/laravel/tree/master/app/Http/Controllers/Auth

Upgrade Guide 36

{tip} If you were not customizing the authentication controllers, you should just be able
to drop in fresh copies of the controllers from GitHub and verify that you are calling
the Auth::routes method in your routes/web.php file.

Password Reset Emails

Password reset emails now use the new Laravel notifications feature. If you would like to customize
the notification sent when sending password reset links, you should override the sendPasswor-

dResetNotification method of the Illuminate\Auth\Passwords\CanResetPassword trait.

Your User model must use the new Illuminate\Notifications\Notifiable trait in order for
password reset link emails to be delivered:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Notifications\Notifiable;

6 use Illuminate\Foundation\Auth\User as Authenticatable;

7

8 class User extends Authenticatable

9 {

10 use Notifiable;

11 }

{note} Don’t forget to register the Illuminate\Notifications\NotificationServiceProvider
in the providers array of your config/app.php configuration file.

POST To Logout

The Auth::routes method now registers a POST route for /logout instead of a GET route. This
prevents other web applications from logging your users out of your application. To upgrade, you
should either convert your logout requests to use the POST verb or register your own GET route for
the /logout URI:

1 Route::get('/logout', 'Auth\LoginController@logout');

Upgrade Guide 37

Authorization

Calling Policy Methods With Class Names

Some policy methods only receive the currently authenticated user and not an instance of the model
they authorize. This situation is most common when authorizing create actions. For example, if you
are creating a blog, you may wish to check if a user is authorized to create any posts at all.

When defining policy methods that will not receive a model instance, such as a createmethod, the
class name will no longer be passed as the second argument to the method. Your method should just
expect the authenticated user instance:

1 /**

2 * Determine if the given user can create posts.

3 *

4 * @param \App\User $user

5 * @return bool

6 */

7 public function create(User $user)

8 {

9 //

10 }

The AuthorizesResources Trait

The AuthorizesResources trait has been merged with the AuthorizesRequests trait. You should
remove the AuthorizesResources trait from your app/Http/Controllers/Controller.php file.

Blade

Custom Directives

In prior versions of Laravel, when registering custom Blade directives using the directivemethod,
the $expression passed to your directive callback contained the outer-most parenthesis. In Laravel
5.3, these outer-most parenthesis are not included in the expression passed to your directive callback.
Be sure to review the Blade extension documentation and verify your custom Blade directives are
still working properly.

Upgrade Guide 38

Broadcasting

Service Provider

Laravel 5.3 includes significant improvements to event broadcasting. You should add the new
BroadcastServiceProvider to your app/Providers directory by grabbing a fresh copy of the source
from GitHub²⁷. Once you have defined the new service provider, you should add it to the providers
array of your config/app.php configuration file.

Cache

Extension Closure Binding & $this

When calling the Cache::extend method with a Closure, $this will be bound to the CacheManager
instance, allowing you to call its methods from within your extension Closure:

1 Cache::extend('memcached', function ($app, $config) {

2 try {

3 return $this->createMemcachedDriver($config);

4 } catch (Exception $e) {

5 return $this->createNullDriver($config);

6 }

7 });

Cashier

If you are using Cashier, you should upgrade your laravel/cashier package to the ∼7.0 release.
This release of Cashier only upgrades a few internal methods to be compatible with Laravel 5.3 and
is not a breaking change.

Collections

Key / Value Order Change

The first, last, and contains collection methods all pass the “value” as the first parameter to their
given callback Closure. For example:

²⁷https://raw.githubusercontent.com/laravel/laravel/develop/app/Providers/BroadcastServiceProvider.php

https://raw.githubusercontent.com/laravel/laravel/develop/app/Providers/BroadcastServiceProvider.php
https://raw.githubusercontent.com/laravel/laravel/develop/app/Providers/BroadcastServiceProvider.php
https://raw.githubusercontent.com/laravel/laravel/develop/app/Providers/BroadcastServiceProvider.php

Upgrade Guide 39

1 $collection->first(function ($value, $key) {

2 return ! is_null($value);

3 });

In previous versions of Laravel, the $keywas passed first. Since most use cases are only interested in
the $value it is now passed first. You should do a “global find” in your application for these methods
to verify that you are expecting the $value to be passed as the first argument to your Closure.

Collection where Comparison Methods Are “Loose” By Default

A collection’s where method now performs a “loose” comparison by default instead of a strict
comparison. If you would like to perform a strict comparison, youmay use the whereStrictmethod.

The where method also no longer accepts a third parameter to indicate “strictness”. You should
explicitly call either where or whereStrict depending on your application’s needs.

Controllers

Session In The Constructor {#upgrade-5.3-session-in-constructors}

In previous versions of Laravel, you could access session variables or the authenticated user in
your controller’s constructor. This was never intended to be an explicit feature of the framework.
In Laravel 5.3, you can’t access the session or authenticated user in your controller’s constructor
because the middleware has not run yet.

As an alternative, you may define a Closure based middleware directly in your controller’s
constructor. Before using this feature, make sure that your application is running Laravel 5.3.4
or above:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use Illuminate\Support\Facades\Auth;

7 use App\Http\Controllers\Controller;

8

9 class ProjectController extends Controller

10 {

11 /**

12 * All of the current user's projects.

13 */

Upgrade Guide 40

14 protected $projects;

15

16 /**

17 * Create a new controller instance.

18 *

19 * @return void

20 */

21 public function __construct()

22 {

23 $this->middleware(function ($request, $next) {

24 $this->projects = Auth::user()->projects;

25

26 return $next($request);

27 });

28 }

29 }

Of course, you may also access the request session data or authenticated user by type-hinting the
Illuminate\Http\Request class on your controller action:

1 /**

2 * Show all of the projects for the current user.

3 *

4 * @param \Illuminate\Http\Request $request

5 * @return Response

6 */

7 public function index(Request $request)

8 {

9 $projects = $request->user()->projects;

10

11 $value = $request->session()->get('key');

12

13 //

14 }

Upgrade Guide 41

Database

Collections

The fluent query builder now returns Illuminate\Support\Collection instances instead of plain
arrays. This brings consistency to the result types returned by the fluent query builder and Eloquent.

If you do not want to migrate your query builder results to Collection instances, you may chain
the allmethod onto your calls to the query builder’s get or pluckmethods. This will return a plain
PHP array of the results, allowing you to maintain backwards compatibility:

1 $users = DB::table('users')->get()->all();

2

3 $usersIds = DB::table('users')->pluck('id')->all();

Eloquent getRelation Method

The Eloquent getRelationmethod no longer throws a BadMethodCallException if the relation can’t
be loaded. Instead, it will throw an Illuminate\Database\Eloquent\RelationNotFoundException.
This change will only affect your application if you were manually catching the BadMethodCallEx-
ception.

Eloquent $morphClass Property

The $morphClass property that could be defined on Eloquent models has been removed in favor
of defining a “morph map”. Defining a morph map provides support for eager loading and resolves
additional bugs with polymorphic relations. If you were previously relying on the $morphClass

property, you should migrate to morphMap using the following syntax:

1 Relation::morphMap([

2 A> 'YourCustomMorphName' => YourModel::class,

3

4]);

For example, if you previously defined the following $morphClass:

Upgrade Guide 42

1 class User extends Model

2 {

3 A> protected $morphClass = 'user'

4

5 }

You should define the following morphMap in the boot method of your AppServiceProvider:

1 use Illuminate\Database\Eloquent\Relations\Relation;

2

3 Relation::morphMap([

4 A> 'user' => User::class,

5

6]);

Eloquent save Method

The Eloquent savemethod now returns false if the model has not been changed since the last time
it was retrieved or saved.

Eloquent Scopes

Eloquent scopes now respect the leading boolean of scope constraints. For example, if you are
starting your scope with an orWhere constraint it will no longer be converted to normal where.
If you were relying on this feature (e.g. adding multiple orWhere constraints within a loop), you
should verify that the first condition is a normal where to avoid any boolean logic issues.

If your scopes begin with where constraints no action is required. Remember, you can verify your
query SQL using the toSql method of a query:

1 User::where('foo', 'bar')->toSql();

Join Clause

The JoinClause class has been rewritten to unify its syntax with the query builder. The optional
$where parameter of the on clause has been removed. To add a “where” conditions you should
explicitly use one of the where methods offered by the query builder:

Upgrade Guide 43

1 $query->join('table', function ($join) {

2 $join->on('foo', 'bar')->where('bar', 'baz');

3 });

The operator of the on clause is now validated and can no longer contain invalid values. If you were
relying on this feature (e.g. $join->on('foo', 'in', DB::raw('("bar")'))) you should rewrite
the condition using the appropriate where clause:

1 $join->whereIn('foo', ['bar']);

The $bindings property was also removed. To manipulate join bindings directly you may use the
addBinding method:

1 $query->join(DB::raw('('.$subquery->toSql().') table'), function ($join) use ($s\

2 ubquery) {

3 $join->addBinding($subquery->getBindings(), 'join');

4 });

Encryption

Mcrypt Encrypter Has Been Removed

The Mcrypt encrypter was deprecated during the Laravel 5.1.0 release in June 2015. This encrypter
has been totally removed in the 5.3.0 release in favor of the newer encryption implementation based
on OpenSSL, which has been the default encryption scheme for all releases since Laravel 5.1.0.

If you are still using an Mcrypt based cipher in your config/app.php configuration file, you should
update the cipher to AES-256-CBC and set your key to a random 32 byte string which may be securely
generated using php artisan key:generate.

If you are storing encrypted data in your database using the Mcrypt encrypter, you may install the
laravel/legacy-encrypter package²⁸ which includes the legacyMcrypt encrypter implementation.
You should use this package to decrypt your encrypted data and re-encrypt it using the newOpenSSL
encrypter. For example, you may do something like the following in a custom Artisan command:

²⁸https://github.com/laravel/legacy-encrypter

https://github.com/laravel/legacy-encrypter
https://github.com/laravel/legacy-encrypter

Upgrade Guide 44

1 $legacy = new McryptEncrypter($encryptionKey);

2

3 foreach ($records as $record) {

4 $record->encrypted = encrypt(

5 $legacy->decrypt($record->encrypted)

6);

7

8 $record->save();

9 }

Exception Handler

Constructor

The base exception handler class now requires a Illuminate\Container\Container instance to be
passed to its constructor. This change will only affect your application if you have defined a custom
__construct method in your app/Exceptions/Handler.php file. If you have done this, you should
pass a container instance into the parent::__construct method:

1 parent::__construct(app());

Unauthenticated Method

You should add the unauthenticated method to your App\Exceptions\Handler class. This method
will convert authentication exceptions into HTTP responses:

1 /**

2 * Convert an authentication exception into an unauthenticated response.

3 *

4 * @param \Illuminate\Http\Request $request

5 * @param \Illuminate\Auth\AuthenticationException $exception

6 * @return \Illuminate\Http\Response

7 */

8 protected function unauthenticated($request, AuthenticationException $exception)

9 {

10 if ($request->expectsJson()) {

11 return response()->json(['error' => 'Unauthenticated.'], 401);

Upgrade Guide 45

12 }

13

14 return redirect()->guest('login');

15 }

Middleware

can Middleware Namespace Change

The can middleware listed in the $routeMiddleware property of your HTTP kernel should be
updated to the following class:

1 'can' => \Illuminate\Auth\Middleware\Authorize::class,

can Middleware Authentication Exception

The can middleware will now throw an instance of Illuminate\Auth\AuthenticationException
if the user is not authenticated. If you were manually catching a different exception type, you
should update your application to catch this exception. In most cases, this change will not affect
your application.

Binding Substitution Middleware

Route model binding is now accomplished using middleware. All applications should add the
Illuminate\Routing\Middleware\SubstituteBindings to your web middleware group in your
app/Http/Kernel.php file:

1 \Illuminate\Routing\Middleware\SubstituteBindings::class,

You should also register a route middleware for binding substitution in the $routeMiddleware

property of your HTTP kernel:

1 'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,

Upgrade Guide 46

Once this route middleware has been registered, you should add it to the api middleware group:

1 'api' => [

2 'throttle:60,1',

3 'bindings',

4],

Notifications

Installation

Laravel 5.3 includes a new, driver based notification system. You should register the Illumi-

nate\Notifications\NotificationServiceProvider in the providers array of your config/app.php
configuration file.

You should also add the Illuminate\Support\Facades\Notification facade to the aliases array
of your config/app.php configuration file.

Finally, you may use the Illuminate\Notifications\Notifiable trait on your User model or any
other model you wish to receive notifications.

Pagination

Customization

Customizing the paginator’s generated HTML is much easier in Laravel 5.3 compared to previous
Laravel 5.x releases. Instead of defining a “Presenter” class, you only need to define a simple
Blade template. The easiest way to customize the pagination views is by exporting them to your
resources/views/vendor directory using the vendor:publish command:

1 php artisan vendor:publish --tag=laravel-pagination

This command will place the views in the resources/views/vendor/pagination directory. The
default.blade.php file within this directory corresponds to the default pagination view. Simply
edit this file to modify the pagination HTML.

Be sure to review the full pagination documentation for more information.

Upgrade Guide 47

Queue

Configuration

In your queue configuration, all expire configuration items should be renamed to retry_after.
Likewise, the Beanstalk configuration’s ttr item should be renamed to retry_after. This name
change provides more clarity on the purpose of this configuration option.

Closures

Queueing Closures is no longer supported. If you are queueing a Closure in your application, you
should convert the Closure to a class and queue an instance of the class:

1 dispatch(new ProcessPodcast($podcast));

Collection Serialization

The Illuminate\Queue\SerializesModels trait now properly serializes instances of Illuminate\Database\Eloquent\Collection.
This will most likely not be a breaking change for the vast majority of applications; however, if
your application is absolutely dependent on collections not being re-retrieved from the database by
queued jobs, you should verify that this change does not negatively affect your application.

Daemon Workers

It is no longer necessary to specify the --daemon option when calling the queue:work Artisan
command. Running the php artisan queue:work command will automatically assume that you
want to run the worker in daemon mode. If you would like to process a single job, you may use the
--once option on the command:

1 // Start a daemon queue worker...

2 php artisan queue:work

3

4 // Process a single job...

5 php artisan queue:work --once

Event Data Changes

Various queue job events such as JobProcessing and JobProcessed no longer contain the $data

property. You should update your application to call $event->job->payload() to get the equivalent
data.

Upgrade Guide 48

Database Driver Changes

If you are using the database driver to store your queued jobs, you should drop the jobs_queue_-
reserved_reserved_at_index index then drop the reserved column from your jobs table. This
column is no longer required when using the database driver. Once you have completed these
changes, you should add a new compound index on the queue and reserved_at columns.

Below is an example migration you may use to perform the necessary changes:

1 public function up()

2 {

3 Schema::table('jobs', function (Blueprint $table) {

4 $table->dropIndex('jobs_queue_reserved_reserved_at_index');

5 $table->dropColumn('reserved');

6 $table->index(['queue', 'reserved_at']);

7 });

8

9 Schema::table('failed_jobs', function (Blueprint $table) {

10 $table->longText('exception')->after('payload');

11 });

12 }

13

14 public function down()

15 {

16 Schema::table('jobs', function (Blueprint $table) {

17 $table->tinyInteger('reserved')->unsigned();

18 $table->index(['queue', 'reserved', 'reserved_at']);

19 $table->dropIndex('jobs_queue_reserved_at_index');

20 });

21

22 Schema::table('failed_jobs', function (Blueprint $table) {

23 $table->dropColumn('exception');

24 });

25 }

Process Control Extension

If your application makes use of the --timeout option for queue workers, you’ll need to verify that
the pcntl extension²⁹ is installed.

²⁹https://secure.php.net/manual/en/pcntl.installation.php

https://secure.php.net/manual/en/pcntl.installation.php
https://secure.php.net/manual/en/pcntl.installation.php

Upgrade Guide 49

Serializing Models On Legacy Style Queue Jobs

Typically, jobs in Laravel are queued by passing a new job instance to the Queue::push method.
However, some applications may be queuing jobs using the following legacy syntax:

1 Queue::push('ClassName@method');

If you are queueing jobs using this syntax, Eloquentmodels will no longer be automatically serialized
and re-retrieved by the queue. If you would like your Eloquent models to be automatically serialized
by the queue, you should use the Illuminate\Queue\SerializesModels trait on your job class and
queue the job using the new push syntax:

1 Queue::push(new ClassName);

Routing

Resource Parameters Are Singular By Default

In previous versions of Laravel, route parameters registered using Route::resource were not
“singularized”. This could lead to some unexpected behavior when registering route model bindings.
For example, given the following Route::resource call:

1 Route::resource('photos', 'PhotoController');

The URI for the show route would be defined as follows:

1 /photos/{photos}

In Laravel 5.3, all resource route parameters are singularized by default. So, the same call to
Route::resource would register the following URI:

1 /photos/{photo}

Upgrade Guide 50

If you would like to maintain the previous behavior instead of automatically singularizing resource
route parameters, you may make the following call to the singularResourceParametersmethod in
your AppServiceProvider:

1 use Illuminate\Support\Facades\Route;

2

3 Route::singularResourceParameters(false);

Resource Route Names No Longer Affected By Prefixes

URL prefixes no longer affect the route names assigned to routes when using Route::resource,
since this behavior defeated the entire purpose of using route names in the first place.

If your application is using Route::resource within a Route::group call that specified a prefix

option, you should examine all of your route helper and UrlGenerator::route calls to verify that
you are no longer appending this URI prefix to the route name.

If this change causes you to have two routes with the same name, you have two options. First, you
may use the names option when calling Route::resource to specify a custom name for a given route.
Refer to the resource routing documentation for more information. Alternatively, you may add the
as option on your route group:

1 Route::group(['as' => 'admin.', 'prefix' => 'admin'], function () {

2 //

3 });

Validation

Form Request Exceptions

If a form request’s validation fails, Laravel will now throw an instance of Illuminate\Validation\ValidationException
instead of an instance of HttpException. If you are manually catching the HttpException instance
thrown by a form request, you should update your catch blocks to catch the ValidationException
instead.

The Message Bag

If you were previously using the has method to determine if an Illuminate\Support\MessageBag

instance contained any messages, you should use the count method instead. The has method now
requires a parameter and only determines if a specific key exists in the message bag.

Upgrade Guide 51

Nullable Primitives

When validating arrays, booleans, integers, numerics, and strings, nullwill no longer be considered
a valid value unless the rule set contains the new nullable rule:

1 Validate::make($request->all(), [

2 'field' => 'nullable|max:5',

3]);

Upgrading To 5.2.0 From 5.1 {#upgrade-upgrade-5.2.0}

Estimated Upgrade Time: Less Than 1 Hour

{note} We attempt to provide a very comprehensive listing of every possible breaking
change made to the framework. However, many of these changes may not apply to your
own application.

Updating Dependencies

Update your composer.json file to point to laravel/framework 5.2.*.

Add "symfony/dom-crawler": "∼3.0" and "symfony/css-selector": "∼3.0" to the require-

dev section of your composer.json file.

Authentication

Configuration File

You should update your config/auth.php configuration file with the following: https://github.com/laravel/laravel/blob/5.2/config/auth.php³⁰

Once you have updated the file with a fresh copy, set your authentication configuration options
to their desired value based on your old configuration file. If you were using the typical, Eloquent
based authentication services available in Laravel 5.1, most values should remain the same.

Take special note of the passwords.users.email configuration option in the new auth.php config-
uration file and verify that the view path matches the actual view path for your application, as the
default path to this view was changed in Laravel 5.2. If the default value in the new configuration
file does not match your existing view, update the configuration option.

³⁰https://github.com/laravel/laravel/blob/5.2/config/auth.php

https://github.com/laravel/laravel/blob/5.2/config/auth.php
https://github.com/laravel/laravel/blob/5.2/config/auth.php

Upgrade Guide 52

Contracts

If you are implementing the Illuminate\Contracts\Auth\Authenticatable contract but are not
using the Authenticatable trait, you should add a new getAuthIdentifierName method to your
contract implementation. Typically, this method will return the column name of the “primary key”
of your authenticatable entity. For example: id.

This is unlikely to affect your application unless you were manually implementing this interface.

Custom Drivers

If you are using the Auth::extendmethod to define a custommethod of retrieving users, you should
now use Auth::provider to define your custom user provider. Once you have defined the custom
provider, you may configure it in the providers array of your new auth.php configuration file.

For more information on custom authentication providers, consult the full authentication documen-
tation.

Redirection

The loginPath()method has been removed from Illuminate\Foundation\Auth\AuthenticatesUsers,
so placing a $loginPath variable in your AuthController is no longer required. By default, the trait
will always redirect users back to their previous location on authentication errors.

Authorization

The Illuminate\Auth\Access\UnauthorizedException has been renamed to Illuminate\Auth\Access\AuthorizationException.
This is unlikely to affect your application if you are not manually catching this exception.

Collections

Eloquent Base Collections

The Eloquent collection instance now returns a base Collection (Illuminate\Support\Collection)
for the following methods: pluck, keys, zip, collapse, flatten, flip.

Key Preservation

The slice, chunk, and reverse methods now preserve keys on the collection. If you do not want
these methods to preserve keys, use the values method on the Collection instance.

Composer Class

The Illuminate\Foundation\Composer class has been moved to Illuminate\Support\Composer.
This is unlikely to affect your application if you were not manually using this class.

Upgrade Guide 53

Commands And Handlers

Self-Handling Commands

You no longer need to implement the SelfHandling contract on your jobs / commands. All jobs are
now self-handling by default, so you can remove this interface from your classes.

Separate Commands & Handlers

The Laravel 5.2 command bus now only supports self-handling commands and no longer supports
separate commands and handlers.

If you would like to continue using separate commands and handlers, you may install a Laravel Col-
lective packagewhich provides backwards-compatible support for this: https://github.com/LaravelCollective/bus³¹

Configuration

Environment Value

Add an env configuration option to your app.php configuration file that looks like the following:

1 'env' => env('APP_ENV', 'production'),

Caching And Env

If you are using the config:cache command during deployment, you must make sure that you are
only calling the env function from within your configuration files, and not from anywhere else in
your application.

If you are calling env from within your application, it is strongly recommended you add proper
configuration values to your configuration files and call env from that location instead, allowing
you to convert your env calls to config calls.

Compiled Classes

If present, remove the following lines from config/compile.php in the files array:

³¹https://github.com/laravelcollective/bus

https://github.com/laravelcollective/bus
https://github.com/laravelcollective/bus

Upgrade Guide 54

1 realpath(__DIR__.'/../app/Providers/BusServiceProvider.php'),

2 realpath(__DIR__.'/../app/Providers/ConfigServiceProvider.php'),

Not doing so can trigger an error when running php artisan optimize if the service providers
listed here do not exist.

CSRF Verification

CSRF verification is no longer automatically performed when running unit tests. This is unlikely to
affect your application.

Database

MySQL Dates

Starting with MySQL 5.7, 0000-00-00 00:00:00 is no longer considered a valid date, since strict
mode is enabled by default. All timestamp columns should receive a valid default value when you
insert records into your database. You may use the useCurrentmethod in your migrations to default
the timestamp columns to the current timestamps, or you may make the timestamps nullable to
allow null values:

1 $table->timestamp('foo')->nullable();

2

3 $table->timestamp('foo')->useCurrent();

4

5 $table->nullableTimestamps();

MySQL JSON Column Type

The json column type now creates actual JSON columns when used by the MySQL driver. If you
are not running MySQL 5.7 or above, this column type will not be available to you. Instead, use the
text column type in your migration.

Seeding

When running database seeds, all Eloquent models are now unguarded by default. Previously
a call to Model::unguard() was required. You can call Model::reguard() at the top of your
DatabaseSeeder class if you would like models to be guarded during seeding.

Upgrade Guide 55

Eloquent

Date Casts

Any attributes that have been added to your $casts property as date or datetime will now be
converted to a string when toArray is called on the model or collection of models. This makes the
date casting conversion consistent with dates specified in your $dates array.

Global Scopes

The global scopes implementation has been re-written to be much easier to use. Your global scopes
no longer need a remove method, so it may be removed from any global scopes you have written.

If you were calling getQuery on an Eloquent query builder to access the underlying query builder
instance, you should now call toBase.

If you were calling the remove method directly for any reason, you should change this call to
$eloquentBuilder->withoutGlobalScope($scope).

New methods withoutGlobalScope and withoutGlobalScopes have been added to the Eloquent
query builder. Any calls to $model->removeGlobalScopes($builder) may be changed to simply
$builder->withoutGlobalScopes().

Primary keys

By default, Eloquent assumes your primary keys are integers and will automatically cast them to
integers. For any primary key that is not an integer you should override the $incrementing property
on your Eloquent model to false:

1 /**

2 * Indicates if the IDs are auto-incrementing.

3 *

4 * @var bool

5 */

6 public $incrementing = true;

Events

Core Event Objects

Some of the core events fired by Laravel now use event objects instead of string event names and
dynamic parameters. Below is a list of the old event names and their new object based counterparts:

Upgrade Guide 56

Old | New ————- | ————- artisan.start | Illuminate\Console\Events\ArtisanStarting
auth.attempting | Illuminate\Auth\Events\Attempting auth.login | Illuminate\Auth\Events\Login
auth.logout | Illuminate\Auth\Events\Logout cache.missed | Illuminate\Cache\Events\CacheMissed
cache.hit | Illuminate\Cache\Events\CacheHit cache.write | Illuminate\Cache\Events\KeyWritten
cache.delete | Illuminate\Cache\Events\KeyForgotten connection.{name}.beginTransaction

| Illuminate\Database\Events\TransactionBeginning connection.{name}.committed | Illumi-
nate\Database\Events\TransactionCommitted connection.{name}.rollingBack | Illuminate\Database\Events\TransactionRolledBack
illuminate.query | Illuminate\Database\Events\QueryExecuted illuminate.queue.before | Il-
luminate\Queue\Events\JobProcessing illuminate.queue.after | Illuminate\Queue\Events\JobProcessed
illuminate.queue.failed | Illuminate\Queue\Events\JobFailed illuminate.queue.stopping |
Illuminate\Queue\Events\WorkerStopping mailer.sending | Illuminate\Mail\Events\MessageSending
router.matched | Illuminate\Routing\Events\RouteMatched

Each of these event objects contains exactly the same parameters that were passed to the event
handler in Laravel 5.1. For example, if you were using DB::listen in 5.1., you may update your code
like so for 5.2.:

1 DB::listen(function ($event) {

2 dump($event->sql);

3 dump($event->bindings);

4 });

You may check out each of the new event object classes to see their public properties.

Exception Handling

Your App\Exceptions\Handler class’ $dontReport property should be updated to include at least
the following exception types:

1 use Illuminate\Validation\ValidationException;

2 use Illuminate\Auth\Access\AuthorizationException;

3 use Illuminate\Database\Eloquent\ModelNotFoundException;

4 use Symfony\Component\HttpKernel\Exception\HttpException;

5

6 /**

7 * A list of the exception types that should not be reported.

8 *

9 * @var array

10 */

11 protected $dontReport = [

12 AuthorizationException::class,

Upgrade Guide 57

13 HttpException::class,

14 ModelNotFoundException::class,

15 ValidationException::class,

16];

Helper Functions

The url() helper function now returns a Illuminate\Routing\UrlGenerator instance when no
path is provided.

Implicit Model Binding

Laravel 5.2 includes “implicit model binding”, a convenient new feature to automatically inject
model instances into routes and controllers based on the identifier present in the URI. However,
this does change the behavior of routes and controllers that type-hint model instances.

If you were type-hinting a model instance in your route or controller and were expecting an empty
model instance to be injected, you should remove this type-hint and create an empty model instance
directly within your route or controller; otherwise, Laravel will attempt to retrieve an existing model
instance from the database based on the identifier present in the route’s URI.

IronMQ

The IronMQ queue driver has been moved into its own package and is no longer shipped with the
core framework.

https://github.com/LaravelCollective/iron-queue³²

Jobs / Queue

The php artisan make:job command now creates a “queued” job class definition by default. If you
would like to create a “sync” job, use the --sync option when issuing the command.

Mail

The pretend mail configuration option has been removed. Instead, use the log mail driver, which
performs the same function as pretend and logs even more information about the mail message.

³²https://github.com/laravelcollective/iron-queue

https://github.com/laravelcollective/iron-queue
https://github.com/laravelcollective/iron-queue

Upgrade Guide 58

Pagination

To be consistent with other URLs generated by the framework, the paginator URLs no longer contain
a trailing slash. This is unlikely to affect your application.

Service Providers

The Illuminate\Foundation\Providers\ArtisanServiceProvider should be removed from your
service provider list in your app.php configuration file.

The Illuminate\Routing\ControllerServiceProvider should be removed fromyour service provider
list in your app.php configuration file.

Sessions

Because of changes to the authentication system, any existing sessions will be invalidated when you
upgrade to Laravel 5.2.

Database Session Driver

Anew database session driver has beenwritten for the frameworkwhich includesmore information
about the user such as their user ID, IP address, and user-agent. If you would like to continue using
the old driver you may specify the legacy-database driver in your session.php configuration file.

If you would like to use the new driver, you should add the user_id (nullable integer), ip_-
address (nullable string), and user_agent (text) columns to your session database table.

Stringy

The “Stringy” library is no longer included with the framework. You may install it manually via
Composer if you wish to use it in your application.

Validation

Exception Types

The ValidatesRequests trait now throws an instance of Illuminate\Foundation\Validation\ValidationException
instead of throwing an instance of Illuminate\Http\Exception\HttpResponseException. This is
unlikely to affect your application unless you were manually catching this exception.

Upgrade Guide 59

Deprecations {#upgrade-5.2-deprecations}

The following features are deprecated in 5.2 and will be removed in the 5.3 release in June 2016:

• Illuminate\Contracts\Bus\SelfHandling contract. Can be removed from jobs.
• The lists method on the Collection, query builder and Eloquent query builder objects has
been renamed to pluck. The method signature remains the same.

• Implicit controller routes using Route::controller have been deprecated. Please use explicit
route registration in your routes file. This will likely be extracted into a package.

• The get, post, and other route helper functions have been removed. You may use the Route
facade instead.

• The database session driver from 5.1 has been renamed to legacy-database and will be
removed. Consult notes on the “database session driver” above for more information.

• The Str::randomBytes function has been deprecated in favor of the random_bytes native PHP
function.

• The Str::equals function has been deprecated in favor of the hash_equals native PHP
function.

• Illuminate\View\Expression has been deprecated in favor of Illuminate\Support\HtmlString.
• The WincacheStore cache driver has been removed.

Upgrading To 5.1.11 {#upgrade-upgrade-5.1.11}

Laravel 5.1.11 includes support for authorization and policies. Incorporating these new features into
your existing Laravel 5.1 applications is simple.

{note} These upgrades are optional, and ignoring them will not affect your application.

Create The Policies Directory

First, create an empty app/Policies directory within your application.

Create / Register The AuthServiceProvider & Gate Facade

Create a AuthServiceProvider within your app/Providers directory. You may copy the contents
of the default provider from GitHub³³. Remember to change the provider’s namespace if your
application is using a custom namespace. After creating the provider, be sure to register it in your
app.php configuration file’s providers array.

Also, you should register the Gate facade in your app.php configuration file’s aliases array:

³³https://raw.githubusercontent.com/laravel/laravel/5.1/app/Providers/AuthServiceProvider.php

https://raw.githubusercontent.com/laravel/laravel/5.1/app/Providers/AuthServiceProvider.php
https://raw.githubusercontent.com/laravel/laravel/5.1/app/Providers/AuthServiceProvider.php

Upgrade Guide 60

1 'Gate' => Illuminate\Support\Facades\Gate::class,

Update The User Model

Secondly, use the Illuminate\Foundation\Auth\Access\Authorizable trait and Illuminate\Contracts\Auth\Access\Authorizable
contract on your App\User model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Auth\Authenticatable;

6 use Illuminate\Database\Eloquent\Model;

7 use Illuminate\Auth\Passwords\CanResetPassword;

8 use Illuminate\Foundation\Auth\Access\Authorizable;

9 use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;

10 use Illuminate\Contracts\Auth\Access\Authorizable as AuthorizableContract;

11 use Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

12

13 class User extends Model implements AuthenticatableContract,

14 AuthorizableContract,

15 CanResetPasswordContract

16 {

17 use Authenticatable, Authorizable, CanResetPassword;

18 }

Update The Base Controller

Next, update your base App\Http\Controllers\Controller controller to use the Illuminate\Foundation\Auth\Access\AuthorizesRequests
trait:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Foundation\Bus\DispatchesJobs;

6 use Illuminate\Routing\Controller as BaseController;

7 use Illuminate\Foundation\Validation\ValidatesRequests;

Upgrade Guide 61

8 use Illuminate\Foundation\Auth\Access\AuthorizesRequests;

9

10 abstract class Controller extends BaseController

11 {

12 use AuthorizesRequests, DispatchesJobs, ValidatesRequests;

13 }

Upgrading To 5.1.0 {#upgrade-upgrade-5.1.0}

Estimated Upgrade Time: Less Than 1 Hour

Update bootstrap/autoload.php

Update the $compiledPath variable in bootstrap/autoload.php to the following:

1 $compiledPath = __DIR__.'/cache/compiled.php';

Create bootstrap/cache Directory

Within your bootstrap directory, create a cache directory (bootstrap/cache). Place a .gitignore
file in this directory with the following contents:

1 *

2 !.gitignore

This directory should be writable, and will be used by the framework to store temporary optimiza-
tion files like compiled.php, routes.php, config.php, and services.json.

Add BroadcastServiceProvider Provider

Within your config/app.php configuration file, add Illuminate\Broadcasting\BroadcastServiceProvider
to the providers array.

Upgrade Guide 62

Authentication

If you are using the provided AuthController which uses the AuthenticatesAndRegistersUsers

trait, you will need to make a few changes to how new users are validated and created.

First, you no longer need to pass the Guard and Registrar instances to the base constructor. You can
remove these dependencies entirely from your controller’s constructor.

Secondly, the App\Services\Registrar class used in Laravel 5.0 is no longer needed. You can
simply copy and paste your validator and create method from this class directly into your
AuthController. No other changes should need to be made to these methods; however, you should
be sure to import the Validator facade and your User model at the top of your AuthController.

Password Controller

The included PasswordController no longer requires any dependencies in its constructor. You may
remove both of the dependencies that were required under 5.0.

Validation

If you are overriding the formatValidationErrorsmethod on your base controller class, you should
now type-hint the Illuminate\Contracts\Validation\Validator contract instead of the concrete
Illuminate\Validation\Validator instance.

Likewise, if you are overriding the formatErrorsmethod on the base form request class, you should
now type-hint Illuminate\Contracts\Validation\Validator contract instead of the concrete
Illuminate\Validation\Validator instance.

Migrations

If you have anymigrations that rename a column or anymigrations that drop columns from a SQLite
database, you will need to add the doctrine/dbal dependency to your composer.json file and run
the composer update command in your terminal to install the library.

Eloquent

The create Method

Eloquent’s create method can now be called without any parameters. If you are overriding the
createmethod in your own models, set the default value of the $attributes parameter to an array:

Upgrade Guide 63

1 public static function create(array $attributes = [])

2 {

3 // Your custom implementation

4 }

The find Method

If you are overriding the findmethod in your own models and calling parent::find()within your
custom method, you should now change it to call the find method on the Eloquent query builder:

1 public static function find($id, $columns = ['*'])

2 {

3 $model = static::query()->find($id, $columns);

4

5 // ...

6

7 return $model;

8 }

The lists Method

The listsmethod now returns a Collection instance instead of a plain array for Eloquent queries.
If you would like to convert the Collection into a plain array, use the all method:

1 User::lists('id')->all();

Be aware that the Query Builder lists method still returns an array.

Date Formatting

Previously, the storage format for Eloquent date fields could be modified by overriding the
getDateFormat method on your model. This is still possible; however, for convenience you may
simply specify a $dateFormat property on the model instead of overriding the method.

The date format is also now applied when serializing a model to an array or JSON. This may change
the format of your JSON serialized date fields whenmigrating from Laravel 5.0 to 5.1. To set a specific

Upgrade Guide 64

date format for serialized models, you may override the serializeDate(DateTime $date) method
on your model. This method allows you to have granular control over the formatting of serialized
Eloquent date fields without changing their storage format.

The Collection Class

The sort Method

The sortmethod now returns a fresh collection instance instead of modifying the existing collection:

1 $collection = $collection->sort($callback);

The sortBy Method

The sortBy method now returns a fresh collection instance instead of modifying the existing
collection:

1 $collection = $collection->sortBy('name');

The groupBy Method

The groupBy method now returns Collection instances for each item in the parent Collection. If
you would like to convert all of the items back to plain arrays, you may map over them:

1 $collection->groupBy('type')->map(function ($item)

2 {

3 return $item->all();

4 });

The lists Method

The lists method now returns a Collection instance instead of a plain array. If you would like to
convert the Collection into a plain array, use the all method:

Upgrade Guide 65

1 $collection->lists('id')->all();

Commands & Handlers

The app/Commands directory has been renamed to app/Jobs. However, you are not required to move
all of your commands to the new location, and you may continue using the make:command and
handler:command Artisan commands to generate your classes.

Likewise, the app/Handlers directory has been renamed to app/Listeners and now only contains
event listeners. However, you are not required to move or rename your existing command and event
handlers, and you may continue to use the handler:event command to generate event handlers.

By providing backwards compatibility for the Laravel 5.0 folder structure, you may upgrade your
applications to Laravel 5.1 and slowly upgrade your events and commands to their new locations
when it is convenient for you or your team.

Blade

The createMatcher, createOpenMatcher, and createPlainMatcher methods have been removed
from the Blade compiler. Use the new directive method to create custom directives for Blade in
Laravel 5.1. Consult the extending blade documentation for more information.

Tests

Add the protected $baseUrl property to the tests/TestCase.php file:

1 protected $baseUrl = 'http://localhost';

Translation Files

The default directory for published language files for vendor packages has been moved. Move
any vendor package language files from resources/lang/packages/{locale}/{namespace} to
resources/lang/vendor/{namespace}/{locale} directory. For example, Acme/Anvil package’s
acme/anvil::foo namespaced English language file would be moved from resources/lang/pack-

ages/en/acme/anvil/foo.php to resources/lang/vendor/acme/anvil/en/foo.php.

Upgrade Guide 66

Amazon Web Services SDK

If you are using the AWS SQS queue driver or the AWS SES e-mail driver, you should update your
installed AWS PHP SDK to version 3.0.

If you are using the Amazon S3 filesystem driver, you will need to update the corresponding
Flysystem package via Composer:

• Amazon S3: league/flysystem-aws-s3-v3 ∼1.0

Deprecations

The following Laravel features have been deprecated and will be removed entirely with the release
of Laravel 5.2 in December 2015:

<div class=”content-list” markdown=”1”> - Route filters have been deprecated in preference of
middleware. - The Illuminate\Contracts\Routing\Middleware contract has been deprecated.
No contract is required on your middleware. In addition, the TerminableMiddleware contract
has also been deprecated. Instead of implementing the interface, simply define a terminate

method on your middleware. - The Illuminate\Contracts\Queue\ShouldBeQueued contract has
been deprecated in favor of Illuminate\Contracts\Queue\ShouldQueue. - Iron.io “push queues”
have been deprecated in favor of typical Iron.io queues and queue listeners. - The Illumi-

nate\Foundation\Bus\DispatchesCommands trait has been deprecated and renamed to Illumi-

nate\Foundation\Bus\DispatchesJobs. - Illuminate\Container\BindingResolutionException

has beenmoved to Illuminate\Contracts\Container\BindingResolutionException. - The service
container’s bindShared method has been deprecated in favor of the singleton method. - The
Eloquent and query builder pluck method has been deprecated and renamed to value. - The
collection fetch method has been deprecated in favor of the pluck method. - The array_fetch

helper has been deprecated in favor of the array_pluck method. </div>

Upgrading To 5.0.16 {#upgrade-upgrade-5.0.16}

In your bootstrap/autoload.php file, update the $compiledPath variable to:

1 $compiledPath = __DIR__.'/../vendor/compiled.php';

Service Providers

The App\Providers\BusServiceProvider may be removed from your service provider list in your
app.php configuration file.

Upgrade Guide 67

The App\Providers\ConfigServiceProvider may be removed from your service provider list in
your app.php configuration file.

Upgrading To 5.0 From 4.2 {#upgrade-upgrade-5.0}

Fresh Install, Then Migrate

The recommended method of upgrading is to create a new Laravel 5.0 install and then to copy your
4.2 site’s unique application files into the new application. This would include controllers, routes,
Eloquent models, Artisan commands, assets, and other code specific files to your application.

To start, install a new Laravel 5.0 application into a fresh directory in your local environment. Do
not install any versions newer than 5.0 yet, since we need to complete the migration steps for 5.0
first. We’ll discuss each piece of the migration process in further detail below.

Composer Dependencies & Packages

Don’t forget to copy any additional Composer dependencies into your 5.0 application. This includes
third-party code such as SDKs.

Some Laravel-specific packages may not be compatible with Laravel 5 on initial release. Check with
your package’s maintainer to determine the proper version of the package for Laravel 5. Once you
have added any additional Composer dependencies your application needs, run composer update.

Namespacing

By default, Laravel 4 applications did not utilize namespacing within your application code. So, for
example, all Eloquent models and controllers simply lived in the “global” namespace. For a quicker
migration, you can simply leave these classes in the global namespace in Laravel 5 as well.

Configuration

Migrating Environment Variables

Copy the new .env.example file to .env, which is the 5.0 equivalent of the old .env.php file. Set
any appropriate values there, like your APP_ENV and APP_KEY (your encryption key), your database
credentials, and your cache and session drivers.

Additionally, copy any custom values you had in your old .env.php file and place them in both
.env (the real value for your local environment) and .env.example (a sample instructional value for
other team members).

For more information on environment configuration, view the full documentation.

{note} You will need to place the appropriate .env file and values on your production
server before deploying your Laravel 5 application.

Upgrade Guide 68

Configuration Files

Laravel 5.0 no longer uses app/config/{environmentName}/ directories to provide specific con-
figuration files for a given environment. Instead, move any configuration values that vary by
environment into .env, and then access them in your configuration files using env('key', 'default

value'). You will see examples of this in the config/database.php configuration file.

Set the config files in the config/ directory to represent either the values that are consistent across
all of your environments, or set them to use env() to load values that vary by environment.

Remember, if you add more keys to .env file, add sample values to the .env.example file as well.
This will help your other team members create their own .env files.

Routes

Copy and paste your old routes.php file into your new app/Http/routes.php.

Controllers

Next, move all of your controllers into the app/Http/Controllers directory. Since we are not
going to migrate to full namespacing in this guide, add the app/Http/Controllers directory to
the classmap directive of your composer.json file. Next, you can remove the namespace from the
abstract app/Http/Controllers/Controller.php base class. Verify that your migrated controllers
are extending this base class.

In your app/Providers/RouteServiceProvider.php file, set the namespace property to null.

Route Filters

Copy your filter bindings from app/filters.php and place them into the boot() method of ap-
p/Providers/RouteServiceProvider.php. Add use Illuminate\Support\Facades\Route; in the
app/Providers/RouteServiceProvider.php in order to continue using the Route Facade.

You do not need to move over any of the default Laravel 4.0 filters such as auth and csrf; they’re
all here, but as middleware. Edit any routes or controllers that reference the old default filters (e.g.
['before' => 'auth']) and change them to reference the new middleware (e.g. ['middleware' =>

'auth'].)

Filters are not removed in Laravel 5. You can still bind and use your own custom filters using before
and after.

Global CSRF

By default, CSRF protection is enabled on all routes. If you’d like to disable this, or only manually
enable it on certain routes, remove this line from App\Http\Kernel’s middleware array:

Upgrade Guide 69

1 'App\Http\Middleware\VerifyCsrfToken',

If you want to use it elsewhere, add this line to $routeMiddleware:

1 'csrf' => 'App\Http\Middleware\VerifyCsrfToken',

Now you can add the middleware to individual routes / controllers using ['middleware' =>

'csrf'] on the route. For more information on middleware, consult the full documentation.

Eloquent Models

Feel free to create a new app/Models directory to house your Eloquent models. Again, add this
directory to the classmap directive of your composer.json file.

Update anymodels using SoftDeletingTrait to use Illuminate\Database\Eloquent\SoftDeletes.

Eloquent Caching

Eloquent no longer provides the remember method for caching queries. You now are responsible
for caching your queries manually using the Cache::remember function. For more information on
caching, consult the full documentation.

User Authentication Model

To upgrade your User model for Laravel 5’s authentication system, follow these instructions:

Delete the following from your use block:

1 use Illuminate\Auth\UserInterface;

2 use Illuminate\Auth\Reminders\RemindableInterface;

Add the following to your use block:

Upgrade Guide 70

1 use Illuminate\Auth\Authenticatable;

2 use Illuminate\Auth\Passwords\CanResetPassword;

3 use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;

4 use Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

Remove the UserInterface and RemindableInterface interfaces.

Mark the class as implementing the following interfaces:

1 implements AuthenticatableContract, CanResetPasswordContract

Include the following traits within the class declaration:

1 use Authenticatable, CanResetPassword;

If you used them, remove Illuminate\Auth\Reminders\RemindableTrait and Illuminate\Auth\UserTrait
from your use block and your class declaration.

Cashier User Changes

The name of the trait and interface used by Laravel Cashier has changed. Instead of using Billable-
Trait, use the Laravel\Cashier\Billable trait. And, instead of Laravel\Cashier\BillableInterface
implement the Laravel\Cashier\Contracts\Billable interface instead. No other method changes
are required.

Artisan Commands

Move all of your command classes from your old app/commands directory to the new app/Con-

sole/Commands directory. Next, add the app/Console/Commands directory to the classmap directive
of your composer.json file.

Then, copy your list of Artisan commands from start/artisan.php into the commands array of the
app/Console/Kernel.php file.

Database Migrations & Seeds

Delete the two migrations included with Laravel 5.0, since you should already have the users table
in your database.

Move all of your migration classes from the old app/database/migrations directory to the
new database/migrations. All of your seeds should be moved from app/database/seeds to
database/seeds.

Upgrade Guide 71

Global IoC Bindings

If you have any service container bindings in start/global.php, move them all to the register

method of the app/Providers/AppServiceProvider.php file. You may need to import the App

facade.

Optionally, you may break these bindings up into separate service providers by category.

Views

Move your views from app/views to the new resources/views directory.

Blade Tag Changes

For better security by default, Laravel 5.0 escapes all output from both the {{ }} and {{{ }}} Blade
directives. A new {!! !!} directive has been introduced to display raw, unescaped output. The most
secure option when upgrading your application is to only use the new {!! !!} directive when you
are certain that it is safe to display raw output.

However, if youmust use the old Blade syntax, add the following lines at the bottom of AppServi-
ceProvider@register:

1 \Blade::setRawTags('{{', '}}');

2 \Blade::setContentTags('{{{', '}}}');

3 \Blade::setEscapedContentTags('{{{', '}}}');

This should not be done lightly, and may make your application more vulnerable to XSS exploits.
Also, comments with {{-- will no longer work.

Translation Files

Move your language files from app/lang to the new resources/lang directory.

Public Directory

Copy your application’s public assets from your 4.2 application’s public directory to your new
application’s public directory. Be sure to keep the 5.0 version of index.php.

Tests

Move your tests from app/tests to the new tests directory.

Upgrade Guide 72

Misc. Files

Copy in any other files in your project. For example, .scrutinizer.yml, bower.json and other
similar tooling configuration files.

You may move your Sass, Less, or CoffeeScript to any location you wish. The resources/assets

directory could be a good default location.

Form & HTML Helpers

If you’re using Form or HTML helpers, you will see an error stating class 'Form' not found

or class 'Html' not found. The Form and HTML helpers have been deprecated in Laravel 5.0;
however, there are community-driven replacements such as those maintained by the Laravel
Collective³⁴.

For example, you may add "laravelcollective/html": "∼5.0" to your composer.json file’s
require section.

You’ll also need to add the Form and HTML facades and service provider. Edit config/app.php and
add this line to the ‘providers’ array:

1 'Collective\Html\HtmlServiceProvider',

Next, add these lines to the ‘aliases’ array:

1 'Form' => 'Collective\Html\FormFacade',

2 'Html' => 'Collective\Html\HtmlFacade',

CacheManager

If your application code was injecting Illuminate\Cache\CacheManager to get a non-Facade version
of Laravel’s cache, inject Illuminate\Contracts\Cache\Repository instead.

Pagination

Replace any calls to $paginator->links() with $paginator->render().

³⁴http://laravelcollective.com/docs/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/
html

http://laravelcollective.com/docs/%7B%7Bversion%7D%7D/html
http://laravelcollective.com/docs/%7B%7Bversion%7D%7D/html
http://laravelcollective.com/docs/%7B%7Bversion%7D%7D/html
http://laravelcollective.com/docs/%7B%7Bversion%7D%7D/html

Upgrade Guide 73

Replace any calls to $paginator->getFrom() and $paginator->getTo()with $paginator->firstItem()
and $paginator->lastItem() respectively.

Remove the “get” prefix from calls to $paginator->getPerPage(), $paginator->getCurrentPage(),
$paginator->getLastPage() and $paginator->getTotal() (e.g. $paginator->perPage()).

Beanstalk Queuing

Laravel 5.0 now requires "pda/pheanstalk": "∼3.0" instead of "pda/pheanstalk": "∼2.1".

Remote

The Remote component has been deprecated.

Workbench

The Workbench component has been deprecated.

Upgrading To 4.2 From 4.1

PHP 5.4+

Laravel 4.2 requires PHP 5.4.0 or greater.

Encryption Defaults

Add a new cipher option in your app/config/app.php configuration file. The value of this option
should be MCRYPT_RIJNDAEL_256.

1 'cipher' => MCRYPT_RIJNDAEL_256

This setting may be used to control the default cipher used by the Laravel encryption facilities.

{note} In Laravel 4.2, the default cipher is MCRYPT_RIJNDAEL_128 (AES), which is consid-
ered to be the most secure cipher. Changing the cipher back to MCRYPT_RIJNDAEL_256

is required to decrypt cookies/values that were encrypted in Laravel <= 4.1

Upgrade Guide 74

Soft Deleting Models Now Use Traits

If you are using soft deleting models, the softDeletes property has been removed. You must now
use the SoftDeletingTrait like so:

1 use Illuminate\Database\Eloquent\SoftDeletingTrait;

2

3 class User extends Eloquent

4 {

5 use SoftDeletingTrait;

6 }

You must also manually add the deleted_at column to your dates property:

1 class User extends Eloquent

2 {

3 use SoftDeletingTrait;

4

5 protected $dates = ['deleted_at'];

6 }

The API for all soft delete operations remains the same.

{note} The SoftDeletingTrait can not be applied on a base model. It must be used on
an actual model class.

View / Pagination Environment Renamed

If you are directly referencing the Illuminate\View\Environment class or Illuminate\Pagination\Environment
class, update your code to reference Illuminate\View\Factory and Illuminate\Pagination\Factory
instead. These two classes have been renamed to better reflect their function.

Additional Parameter On Pagination Presenter

If you are extending the Illuminate\Pagination\Presenter class, the abstract method get-

PageLinkWrapper signature has changed to add the rel argument:

Upgrade Guide 75

1 abstract public function getPageLinkWrapper($url, $page, $rel = null);

Iron.Io Queue Encryption

If you are using the Iron.io queue driver, you will need to add a new encrypt option to your queue
configuration file:

1 'encrypt' => true

Upgrading To 4.1.29 From <= 4.1.x

Laravel 4.1.29 improves the column quoting for all database drivers. This protects your application
from some mass assignment vulnerabilities when not using the fillable property on models. If you
are using the fillable property on yourmodels to protect againstmass assignment, your application
is not vulnerable. However, if you are using guarded and are passing a user controlled array into
an “update” or “save” type function, you should upgrade to 4.1.29 immediately as your application
may be at risk of mass assignment.

To upgrade to Laravel 4.1.29, simply composer update. No breaking changes are introduced in this
release.

Upgrading To 4.1.26 From <= 4.1.25

Laravel 4.1.26 introduces security improvements for “remember me” cookies. Before this update, if a
remember cookie was hijacked by another malicious user, the cookie would remain valid for a long
period of time, even after the true owner of the account reset their password, logged out, etc.

This change requires the addition of a new remember_token column to your users (or equivalent)
database table. After this change, a fresh token will be assigned to the user each time they login to
your application. The token will also be refreshed when the user logs out of the application. The
implications of this change are: if a “remember me” cookie is hijacked, simply logging out of the
application will invalidate the cookie.

Upgrade Path

First, add a new, nullable remember_token of VARCHAR(100), TEXT, or equivalent to your users
table.

Upgrade Guide 76

Next, if you are using the Eloquent authentication driver, update your User class with the following
three methods:

1 public function getRememberToken()

2 {

3 return $this->remember_token;

4 }

5

6 public function setRememberToken($value)

7 {

8 $this->remember_token = $value;

9 }

10

11 public function getRememberTokenName()

12 {

13 return 'remember_token';

14 }

{note} All existing “remember me” sessions will be invalidated by this change, so all
users will be forced to re-authenticate with your application.

Package Maintainers

Two new methods were added to the Illuminate\Auth\UserProviderInterface interface. Sample
implementations may be found in the default drivers:

1 public function retrieveByToken($identifier, $token);

2

3 public function updateRememberToken(UserInterface $user, $token);

The Illuminate\Auth\UserInterface also received the three new methods described in the
“Upgrade Path”.

Upgrading To 4.1 From 4.0

Upgrading Your Composer Dependency

To upgrade your application to Laravel 4.1, change your laravel/framework version to 4.1.* in
your composer.json file.

Upgrade Guide 77

Replacing Files

Replace your public/index.php file with this fresh copy from the repository³⁵.

Replace your artisan file with this fresh copy from the repository³⁶.

Adding Configuration Files & Options

Update your aliases and providers arrays in your app/config/app.php configuration file. The
updated values for these arrays can be found in this file³⁷. Be sure to add your custom and package
service providers / aliases back to the arrays.

Add the new app/config/remote.php file from the repository³⁸.

Add the new expire_on_close configuration option to your app/config/session.php file. The
default value should be false.

Add the new failed configuration section to your app/config/queue.php file. Here are the default
values for the section:

1 'failed' => [

2 'database' => 'mysql', 'table' => 'failed_jobs',

3],

(Optional) Update the pagination configuration option in your app/config/view.php file to
pagination::slider-3.

Controller Updates

If app/controllers/BaseController.php has a use statement at the top, change use Illumi-

nate\Routing\Controllers\Controller; to use Illuminate\Routing\Controller;.

Password Reminders Updates

Password reminders have been overhauled for greater flexibility. You may examine the new stub
controller by running the php artisan auth:reminders-controller Artisan command. You may
also browse the updated documentation and update your application accordingly.

Update your app/lang/en/reminders.php language file to match this updated file³⁹.

³⁵https://github.com/laravel/laravel/blob/v4.1.0/public/index.php
³⁶https://github.com/laravel/laravel/blob/v4.1.0/artisan
³⁷https://github.com/laravel/laravel/blob/v4.1.0/app/config/app.php
³⁸https://github.com/laravel/laravel/blob/v4.1.0/app/config/remote.php
³⁹https://github.com/laravel/laravel/blob/v4.1.0/app/lang/en/reminders.php

https://github.com/laravel/laravel/blob/v4.1.0/public/index.php
https://github.com/laravel/laravel/blob/v4.1.0/artisan
https://github.com/laravel/laravel/blob/v4.1.0/app/config/app.php
https://github.com/laravel/laravel/blob/v4.1.0/app/config/remote.php
https://github.com/laravel/laravel/blob/v4.1.0/app/lang/en/reminders.php
https://github.com/laravel/laravel/blob/v4.1.0/public/index.php
https://github.com/laravel/laravel/blob/v4.1.0/artisan
https://github.com/laravel/laravel/blob/v4.1.0/app/config/app.php
https://github.com/laravel/laravel/blob/v4.1.0/app/config/remote.php
https://github.com/laravel/laravel/blob/v4.1.0/app/lang/en/reminders.php

Upgrade Guide 78

Environment Detection Updates

For security reasons, URL domains may no longer be used to detect your application environment.
These values are easily spoofable and allow attackers to modify the environment for a request. You
should convert your environment detection to use machine host names (hostname command on
Mac, Linux, and Windows).

Simpler Log Files

Laravel now generates a single log file: app/storage/logs/laravel.log. However, you may still
configure this behavior in your app/start/global.php file.

Removing Redirect Trailing Slash

In your bootstrap/start.php file, remove the call to $app->redirectIfTrailingSlash(). This
method is no longer needed as this functionality is now handled by the .htaccess file included
with the framework.

Next, replace your Apache .htaccess file with this new one⁴⁰ that handles trailing slashes.

Current Route Access

The current route is now accessed via Route::current() instead of Route::getCurrentRoute().

Composer Update

Once you have completed the changes above, you can run the composer update function to update
your core application files! If you receive class load errors, try running the update command with
the --no-scripts option enabled like so: composer update --no-scripts.

Wildcard Event Listeners

The wildcard event listeners no longer append the event to your handler functions parameters. If
you require finding the event that was fired you should use Event::firing().

⁴⁰https://github.com/laravel/laravel/blob/v4.1.0/public/.htaccess

https://github.com/laravel/laravel/blob/v4.1.0/public/.htaccess
https://github.com/laravel/laravel/blob/v4.1.0/public/.htaccess

Contribution Guide
• Bug Reports
• Core Development Discussion
• Which Branch?
• Security Vulnerabilities
• Coding Style A> - PHPDoc A> - StyleCI

Bug Reports

To encourage active collaboration, Laravel strongly encourages pull requests, not just bug reports.
“Bug reports” may also be sent in the form of a pull request containing a failing test.

However, if you file a bug report, your issue should contain a title and a clear description of the
issue. You should also include as much relevant information as possible and a code sample that
demonstrates the issue. The goal of a bug report is to make it easy for yourself - and others - to
replicate the bug and develop a fix.

Remember, bug reports are created in the hope that others with the same problem will be able to
collaborate with you on solving it. Do not expect that the bug report will automatically see any
activity or that others will jump to fix it. Creating a bug report serves to help yourself and others
start on the path of fixing the problem.

The Laravel source code is managed on Github, and there are repositories for each of the Laravel
projects:

• Laravel Framework⁴¹
• Laravel Application⁴²
• Laravel Documentation⁴³
• Laravel Cashier⁴⁴
• Laravel Cashier for Braintree⁴⁵
• Laravel Envoy⁴⁶
• Laravel Homestead⁴⁷

⁴¹https://github.com/laravel/framework
⁴²https://github.com/laravel/laravel
⁴³https://github.com/laravel/docs
⁴⁴https://github.com/laravel/cashier
⁴⁵https://github.com/laravel/cashier-braintree
⁴⁶https://github.com/laravel/envoy
⁴⁷https://github.com/laravel/homestead

https://github.com/laravel/framework
https://github.com/laravel/laravel
https://github.com/laravel/docs
https://github.com/laravel/cashier
https://github.com/laravel/cashier-braintree
https://github.com/laravel/envoy
https://github.com/laravel/homestead
https://github.com/laravel/framework
https://github.com/laravel/laravel
https://github.com/laravel/docs
https://github.com/laravel/cashier
https://github.com/laravel/cashier-braintree
https://github.com/laravel/envoy
https://github.com/laravel/homestead

Contribution Guide 80

• Laravel Homestead Build Scripts⁴⁸
• Laravel Passport⁴⁹
• Laravel Scout⁵⁰
• Laravel Socialite⁵¹
• Laravel Website⁵²
• Laravel Art⁵³

Core Development Discussion

Youmay propose new features or improvements of existing Laravel behavior in the Laravel Internals
issue board⁵⁴. If you propose a new feature, please be willing to implement at least some of the code
that would be needed to complete the feature.

Informal discussion regarding bugs, new features, and implementation of existing features takes
place in the #internals channel of the LaraChat⁵⁵ Slack team. Taylor Otwell, the maintainer of
Laravel, is typically present in the channel on weekdays from 8am-5pm (UTC-06:00 or Ameri-
ca/Chicago), and sporadically present in the channel at other times.

Which Branch?

All bug fixes should be sent to the latest stable branch or to the current LTS branch (5.1). Bug fixes
should never be sent to the master branch unless they fix features that exist only in the upcoming
release.

Minor features that are fully backwards compatible with the current Laravel release may be sent
to the latest stable branch.

Major new features should always be sent to the master branch, which contains the upcoming
Laravel release.

If you are unsure if your feature qualifies as a major or minor, please ask Taylor Otwell in the
#internals channel of the LaraChat⁵⁶ Slack team.

⁴⁸https://github.com/laravel/settler
⁴⁹https://github.com/laravel/passport
⁵⁰https://github.com/laravel/scout
⁵¹https://github.com/laravel/socialite
⁵²https://github.com/laravel/laravel.com
⁵³https://github.com/laravel/art
⁵⁴https://github.com/laravel/internals/issues
⁵⁵https://larachat.co
⁵⁶https://larachat.co

https://github.com/laravel/settler
https://github.com/laravel/passport
https://github.com/laravel/scout
https://github.com/laravel/socialite
https://github.com/laravel/laravel.com
https://github.com/laravel/art
https://github.com/laravel/internals/issues
https://larachat.co/
https://larachat.co/
https://github.com/laravel/settler
https://github.com/laravel/passport
https://github.com/laravel/scout
https://github.com/laravel/socialite
https://github.com/laravel/laravel.com
https://github.com/laravel/art
https://github.com/laravel/internals/issues
https://larachat.co/
https://larachat.co/

Contribution Guide 81

Security Vulnerabilities

If you discover a security vulnerability within Laravel, please send an email to Taylor Otwell at
taylor@laravel.com. All security vulnerabilities will be
promptly addressed.

Coding Style

Laravel follows the PSR-2⁵⁷ coding standard and the PSR-4⁵⁸ autoloading standard.

PHPDoc

Below is an example of a valid Laravel documentation block. Note that the @param attribute is
followed by two spaces, the argument type, two more spaces, and finally the variable name:

1 /**

2 * Register a binding with the container.

3 *

4 * @param string|array $abstract

5 * @param \Closure|string|null $concrete

6 * @param bool $shared

7 * @return void

8 */

9 public function bind($abstract, $concrete = null, $shared = false)

10 {

11 //

12 }

StyleCI

Don’t worry if your code styling isn’t perfect! StyleCI⁵⁹ will automatically merge any style fixes into
the Laravel repository after pull requests are merged. This allows us to focus on the content of the
contribution and not the code style.

⁵⁷https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
⁵⁸https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
⁵⁹https://styleci.io/

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://styleci.io/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://styleci.io/

Installation
• Installation A> - Server Requirements A> - Installing Laravel A> - Configuration

Installation

Server Requirements

The Laravel framework has a few system requirements. Of course, all of these requirements are
satisfied by the Laravel Homestead virtual machine, so it’s highly recommended that you use
Homestead as your local Laravel development environment.

However, if you are not usingHomestead, youwill need tomake sure your servermeets the following
requirements:

<div class=”content-list” markdown=”1”> - PHP >= 5.6.4 - OpenSSL PHP Extension - PDO PHP
Extension - Mbstring PHP Extension - Tokenizer PHP Extension - XML PHP Extension </div>

Installing Laravel

Laravel utilizes Composer⁶⁰ to manage its dependencies. So, before using Laravel, make sure you
have Composer installed on your machine.

Via Laravel Installer

First, download the Laravel installer using Composer:

1 composer global require "laravel/installer"

Make sure to place the $HOME/.composer/vendor/bin directory (or the equivalent directory for your
OS) in your $PATH so the laravel executable can be located by your system.

Once installed, the laravel new command will create a fresh Laravel installation in the directory
you specify. For instance, laravel new blog will create a directory named blog containing a fresh
Laravel installation with all of Laravel’s dependencies already installed:

⁶⁰https://getcomposer.org

https://getcomposer.org/
https://getcomposer.org/

Installation 83

1 laravel new blog

Via Composer Create-Project

Alternatively, you may also install Laravel by issuing the Composer create-project command in
your terminal:

1 composer create-project --prefer-dist laravel/laravel blog

Local Development Server

If you have PHP installed locally and you would like to use PHP’s built-in development server
to serve your application, you may use the serve Artisan command. This command will start a
development server at http://localhost:8000:

1 php artisan serve

Of course, more robust local development options are available via Homestead and Valet.

Configuration

Public Directory

After installing Laravel, you should configure your web server’s document / web root to be the
public directory. The index.php in this directory serves as the front controller for all HTTP requests
entering your application.

Configuration Files

All of the configuration files for the Laravel framework are stored in the config directory. Each
option is documented, so feel free to look through the files and get familiar with the options available
to you.

Installation 84

Directory Permissions

After installing Laravel, you may need to configure some permissions. Directories within the
storage and the bootstrap/cache directories should be writable by your web server or Laravel
will not run. If you are using the Homestead virtual machine, these permissions should already be
set.

Application Key

The next thing you should do after installing Laravel is set your application key to a random string.
If you installed Laravel via Composer or the Laravel installer, this key has already been set for you
by the php artisan key:generate command.

Typically, this string should be 32 characters long. The key can be set in the .env environment file.
If you have not renamed the .env.example file to .env, you should do that now. If the application
key is not set, your user sessions and other encrypted data will not be secure!

Additional Configuration

Laravel needs almost no other configuration out of the box. You are free to get started developing!
However, youmaywish to review the config/app.php file and its documentation. It contains several
options such as timezone and locale that you may wish to change according to your application.

You may also want to configure a few additional components of Laravel, such as:

<div class=”content-list” markdown=”1”> - Cache - Database - Session </div>

Once Laravel is installed, you should also configure your local environment.

Configuration
• Introduction
• Accessing Configuration Values
• Environment Configuration A> - Determining The Current Environment
• Configuration Caching
• Maintenance Mode

Introduction

All of the configuration files for the Laravel framework are stored in the config directory. Each
option is documented, so feel free to look through the files and get familiar with the options available
to you.

Accessing Configuration Values

You may easily access your configuration values using the global config helper function from
anywhere in your application. The configuration values may be accessed using “dot” syntax, which
includes the name of the file and option you wish to access. A default value may also be specified
and will be returned if the configuration option does not exist:

1 $value = config('app.timezone');

To set configuration values at runtime, pass an array to the config helper:

1 config(['app.timezone' => 'America/Chicago']);

Environment Configuration

It is often helpful to have different configuration values based on the environment the application is
running in. For example, you may wish to use a different cache driver locally than you do on your
production server.

Configuration 86

To make this a cinch, Laravel utilizes the DotEnv⁶¹ PHP library by Vance Lucas. In a fresh Laravel
installation, the root directory of your application will contain a .env.example file. If you install
Laravel via Composer, this file will automatically be renamed to .env. Otherwise, you should rename
the file manually.

{tip} You may also creating a .env.testing file. This file will override values from the
.env file when running PHPUnit tests or executing Artisan commands with the --

env=testing option.

Retrieving Environment Configuration

All of the variables listed in this file will be loaded into the $_ENV PHP super-global when your
application receives a request. However, you may use the env helper to retrieve values from these
variables in your configuration files. In fact, if you review the Laravel configuration files, you will
notice several of the options already using this helper:

1 'debug' => env('APP_DEBUG', false),

The second value passed to the env function is the “default value”. This value will be used if no
environment variable exists for the given key.

Your .env file should not be committed to your application’s source control, since each developer /
server using your application could require a different environment configuration.

If you are developing with a team, you may wish to continue including a .env.example file with
your application. By putting place-holder values in the example configuration file, other developers
on your team can clearly see which environment variables are needed to run your application.

Determining The Current Environment

The current application environment is determined via the APP_ENV variable from your .env file.
You may access this value via the environment method on the App facade:

1 $environment = App::environment();

You may also pass arguments to the environment method to check if the environment matches a
given value. The method will return true if the environment matches any of the given values:

⁶¹https://github.com/vlucas/phpdotenv

https://github.com/vlucas/phpdotenv
https://github.com/vlucas/phpdotenv

Configuration 87

1 if (App::environment('local')) {

2 // The environment is local

3 }

4

5 if (App::environment('local', 'staging')) {

6 // The environment is either local OR staging...

7 }

Configuration Caching

To give your application a speed boost, you should cache all of your configuration files into a single
file using the config:cache Artisan command. This will combine all of the configuration options
for your application into a single file which will be loaded quickly by the framework.

You should typically run the php artisan config:cache command as part of your production
deployment routine. The command should not be run during local development as configuration
options will frequently need to be changed during the course of your application’s development.

Maintenance Mode

When your application is in maintenance mode, a custom view will be displayed for all requests
into your application. This makes it easy to “disable” your application while it is updating or when
you are performing maintenance. A maintenance mode check is included in the default middleware
stack for your application. If the application is in maintenance mode, a MaintenanceModeException
will be thrown with a status code of 503.

To enable maintenance mode, simply execute the down Artisan command:

1 php artisan down

You may also provide message and retry options to the down command. The message value may be
used to display or log a custom message, while the retry value will be set as the Retry-AfterHTTP
header’s value:

1 php artisan down --message="Upgrading Database" --retry=60

Configuration 88

To disable maintenance mode, use the up command:

1 php artisan up

Maintenance Mode Response Template

The default template formaintenancemode responses is located in resources/views/errors/503.blade.php.
You are free to modify this view as needed for your application.

Maintenance Mode & Queues

While your application is in maintenance mode, no queued jobs will be handled. The jobs will
continue to be handled as normal once the application is out of maintenance mode.

Alternatives To Maintenance Mode

Since maintenance mode requires your application to have several seconds of downtime, consider
alternatives like Envoyer⁶² to accomplish zero-downtime deployment with Laravel.

⁶²https://envoyer.io

https://envoyer.io/
https://envoyer.io/

Directory Structure
• Introduction
• The Root Directory A> - The app Directory A> - The bootstrap Directory A> - The config
Directory A> - The database Directory A> - The public Directory A> - The resources

Directory A> - The routes Directory A> - The storage Directory A> - The tests Directory
A> - The vendor Directory

• The App Directory A> - The Console Directory A> - The Events Directory A> - The
Exceptions Directory A> - The Http Directory A> - The Jobs Directory A> - The Listeners
Directory A> - The Mail Directory A> - The Notifications Directory A> - The Policies

Directory A> - The Providers Directory

Introduction

The default Laravel application structure is intended to provide a great starting point for both
large and small applications. Of course, you are free to organize your application however you like.
Laravel imposes almost no restrictions on where any given class is located - as long as Composer
can autoload the class.

Where Is The Models Directory?

When getting started with Laravel, many developers are confused by the lack of a models directory.
However, the lack of such a directory is intentional. We find the word “models” ambiguous since
it means many different things to many different people. Some developers refer to an application’s
“model” as the totality of all of its business logic, while others refer to “models” as classes that
interact with a relational database.

For this reason, we choose to place Eloquent models in the app directory by default, and allow the
developer to place them somewhere else if they choose.

The Root Directory

The App Directory

The app directory, as you might expect, contains the core code of your application. We’ll explore
this directory in more detail soon; however, almost all of the classes in your application will be in
this directory.

Directory Structure 90

The Bootstrap Directory

The bootstrap directory contains files that bootstrap the framework and configure autoloading. This
directory also houses a cache directory which contains framework generated files for performance
optimization such as the route and services cache files.

The Config Directory

The config directory, as the name implies, contains all of your application’s configuration files. It’s
a great idea to read through all of these files and familiarize yourself with all of the options available
to you.

The Database Directory

The database directory contains your database migration and seeds. If you wish, you may also use
this directory to hold an SQLite database.

The Public Directory

The public directory contains the index.php file, which is the entry point for all requests entering
your application. This directory also houses your assets such as images, JavaScript, and CSS.

The Resources Directory

The resources directory contains your views as well as your raw, un-compiled assets such as LESS,
SASS, or JavaScript. This directory also houses all of your language files.

The Routes Directory

The routes directory contains all of the route definitions for your application. By default, three
route files are included with Laravel: web.php, api.php, and console.php.

The web.php file contains routes that the RouteServiceProvider places in the webmiddleware group,
which provides session state, CSRF protection, and cookie encryption. If your application does not
offer a stateless, RESTful API, all of your routes will most likely be defined in the web.php file.

The api.php file contains routes that the RouteServiceProvider places in the apimiddleware group,
which provides rate limiting. These routes are intended to be stateless, so requests entering the
application through these routes are intended to be authenticated via tokens and will not have access
to session state.

The console.php file is where you may define all of your Closure based console commands. Each
Closure is bound to a command instance allowing a simple approach to interacting with each
command’s IO methods. Even though this file does not define HTTP routes, it defines console based
entry points (routes) into your application.

Directory Structure 91

The Storage Directory

The storage directory contains your compiled Blade templates, file based sessions, file caches, and
other files generated by the framework. This directory is segregated into app, framework, and logs

directories. The app directory may be used to store any files generated by your application. The
framework directory is used to store framework generated files and caches. Finally, the logs directory
contains your application’s log files.

The storage/app/public directory may be used to store user-generated files, such as profile avatars,
that should be publicly accessible. You should create a symbolic link at public/storagewhich points
to this directory. You may create the link using the php artisan storage:link command.

The Tests Directory

The tests directory contains your automated tests. An example PHPUnit⁶³ is provided out of the
box. Each test class should be suffixed with the word Test. Youmay run your tests using the phpunit
or php vendor/bin/phpunit commands.

The Vendor Directory

The vendor directory contains your Composer⁶⁴ dependencies.

The App Directory

The majority of your application is housed in the app directory. By default, this directory is
namespaced under App and is autoloaded by Composer using the PSR-4 autoloading standard⁶⁵.

The app directory contains a variety of additional directories such as Console, Http, and Providers.
Think of the Console and Http directories as providing an API into the core of your application. The
HTTP protocol and CLI are both mechanisms to interact with your application, but do not actually
contain application logic. In other words, they are simply two ways of issuing commands to your
application. The Console directory contains all of your Artisan commands, while the Http directory
contains your controllers, middleware, and requests.

A variety of other directories will be generated inside the app directory as you use the make Artisan
commands to generate classes. So, for example, the app/Jobs directory will not exist until you
execute the make:job Artisan command to generate a job class.

{tip} Many of the classes in the app directory can be generated by Artisan via commands.
To review the available commands, run the php artisan list make command in your
terminal.

⁶³https://phpunit.de/
⁶⁴https://getcomposer.org
⁶⁵http://www.php-fig.org/psr/psr-4/

https://phpunit.de/
https://getcomposer.org/
http://www.php-fig.org/psr/psr-4/
https://phpunit.de/
https://getcomposer.org/
http://www.php-fig.org/psr/psr-4/

Directory Structure 92

The Console Directory

The Console directory contains all of the custom Artisan commands for your application. These
commands may be generated using the make:command command. This directory also houses your
console kernel, which is where your custom Artisan commands are registered and your scheduled
tasks are defined.

The Events Directory

This directory does not exist by default, but will be created for you by the event:generate and
make:event Artisan commands. The Events directory, as you might expect, houses event classes.
Events may be used to alert other parts of your application that a given action has occurred,
providing a great deal of flexibility and decoupling.

The Exceptions Directory

The Exceptions directory contains your application’s exception handler and is also a good place to
place any exceptions thrown by your application. If youwould like to customize how your exceptions
are logged or rendered, you should modify the Handler class in this directory.

The Http Directory

The Http directory contains your controllers, middleware, and form requests. Almost all of the logic
to handle requests entering your application will be placed in this directory.

The Jobs Directory

This directory does not exist by default, but will be created for you if you execute the make:job

Artisan command. The Jobs directory houses the queueable jobs for your application. Jobs may be
queued by your application or run synchronously within the current request lifecycle. Jobs that run
synchronously during the current request are sometimes referred to as “commands” since they are
an implementation of the command pattern⁶⁶.

The Listeners Directory

This directory does not exist by default, but will be created for you if you execute the event:generate
or make:listenerArtisan commands. The Listeners directory contains the classes that handle your
events. Event listeners receive an event instance and perform logic in response to the event being
fired. For example, a UserRegistered event might be handled by a SendWelcomeEmail listener.

⁶⁶https://en.wikipedia.org/wiki/Command_pattern

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Command_pattern

Directory Structure 93

The Mail Directory

This directory does not exist by default, but will be created for you if you execute the make:mail

Artisan command. The Mail directory contains all of your classes that represent emails sent by your
application. Mail objects allow you to encapsulate all of the logic of building an email in a single,
simple class that may be sent using the Mail::send method.

The Notifications Directory

This directory does not exist by default, but will be created for you if you execute the make:notification
Artisan command. The Notifications directory contains all of the “transactional” notifications that
are sent by your application, such as simple notifications about events that happen within your
application. Laravel’s notification features abstracts sending notifications over a variety of drivers
such as email, Slack, SMS, or stored in a database.

The Policies Directory

This directory does not exist by default, but will be created for you if you execute the make:policy
Artisan command. The Policies directory contains the authorization policy classes for your
application. Policies are used to determine if a user can perform a given action against a resource.
For more information, check out the authorization documentation.

The Providers Directory

The Providers directory contains all of the service providers for your application. Service providers
bootstrap your application by binding services in the service container, registering events, or
performing any other tasks to prepare your application for incoming requests.

In a fresh Laravel application, this directory will already contain several providers. You are free to
add your own providers to this directory as needed.

Errors & Logging
• Introduction
• Configuration A> - Error Detail A> - Log Storage A> - Log Severity Levels A> - Custom
Monolog Configuration

• The Exception Handler A> - Report Method A> - Render Method
• HTTP Exceptions A> - Custom HTTP Error Pages
• Logging

Introduction

When you start a new Laravel project, error and exception handling is already configured for you.
The App\Exceptions\Handler class is where all exceptions triggered by your application are logged
and then rendered back to the user. We’ll dive deeper into this class throughout this documentation.

For logging, Laravel utilizes the Monolog⁶⁷ library, which provides support for a variety of powerful
log handlers. Laravel configures several of these handlers for you, allowing you to choose between
a single log file, rotating log files, or writing error information to the system log.

Configuration

Error Detail

The debug option in your config/app.php configuration file determines how much information
about an error is actually displayed to the user. By default, this option is set to respect the value of
the APP_DEBUG environment variable, which is stored in your .env file.

For local development, you should set the APP_DEBUG environment variable to true. In your
production environment, this value should always be false. If the value is set to true in production,
you risk exposing sensitive configuration values to your application’s end users.

Log Storage

Out of the box, Laravel supports writing log information to single files, daily files, the syslog,
and the errorlog. To configure which storage mechanism Laravel uses, you should modify the log
option in your config/app.php configuration file. For example, if you wish to use daily log files
instead of a single file, you should set the log value in your app configuration file to daily:

⁶⁷https://github.com/Seldaek/monolog

https://github.com/Seldaek/monolog
https://github.com/Seldaek/monolog

Errors & Logging 95

1 'log' => 'daily'

Maximum Daily Log Files

When using the daily log mode, Laravel will only retain five days of log files by default. If you
want to adjust the number of retained files, you may add a log_max_files configuration value to
your app configuration file:

1 'log_max_files' => 30

Log Severity Levels

When using Monolog, log messages may have different levels of severity. By default, Laravel writes
all log levels to storage. However, in your production environment, you may wish to configure
the minimum severity that should be logged by adding the log_level option to your app.php

configuration file.

Once this option has been configured, Laravel will log all levels greater than or equal to the specified
severity. For example, a default log_level of error will log error, critical, alert, and emergency
messages:

1 'log_level' => env('APP_LOG_LEVEL', 'error'),

{tip} Monolog recognizes the following severity levels - from least severe to most severe:
debug, info, notice, warning, error, critical, alert, emergency.

Custom Monolog Configuration

If you would like to have complete control over howMonolog is configured for your application, you
may use the application’s configureMonologUsing method. You should place a call to this method
in your bootstrap/app.php file right before the $app variable is returned by the file:

Errors & Logging 96

1 $app->configureMonologUsing(function ($monolog) {

2 $monolog->pushHandler(...);

3 });

4

5 return $app;

The Exception Handler

The Report Method

All exceptions are handled by the App\Exceptions\Handler class. This class contains two methods:
report and render. We’ll examine each of these methods in detail. The report method is used to
log exceptions or send them to an external service like Bugsnag⁶⁸ or Sentry⁶⁹. By default, the report
method simply passes the exception to the base class where the exception is logged. However, you
are free to log exceptions however you wish.

For example, if you need to report different types of exceptions in different ways, you may use the
PHP instanceof comparison operator:

1 /**

2 * Report or log an exception.

3 *

4 * This is a great spot to send exceptions to Sentry, Bugsnag, etc.

5 *

6 * @param \Exception $exception

7 * @return void

8 */

9 public function report(Exception $exception)

10 {

11 if ($exception instanceof CustomException) {

12 //

13 }

14

15 return parent::report($exception);

16 }

⁶⁸https://bugsnag.com
⁶⁹https://github.com/getsentry/sentry-laravel

https://bugsnag.com/
https://github.com/getsentry/sentry-laravel
https://bugsnag.com/
https://github.com/getsentry/sentry-laravel

Errors & Logging 97

Ignoring Exceptions By Type

The $dontReport property of the exception handler contains an array of exception types that will
not be logged. For example, exceptions resulting from 404 errors, as well as several other types of
errors, are not written to your log files. You may add other exception types to this array as needed:

1 /**

2 * A list of the exception types that should not be reported.

3 *

4 * @var array

5 */

6 protected $dontReport = [

7 \Illuminate\Auth\AuthenticationException::class,

8 \Illuminate\Auth\Access\AuthorizationException::class,

9 \Symfony\Component\HttpKernel\Exception\HttpException::class,

10 \Illuminate\Database\Eloquent\ModelNotFoundException::class,

11 \Illuminate\Validation\ValidationException::class,

12];

The Render Method

The render method is responsible for converting a given exception into an HTTP response that
should be sent back to the browser. By default, the exception is passed to the base class which
generates a response for you. However, you are free to check the exception type or return your own
custom response:

1 /**

2 * Render an exception into an HTTP response.

3 *

4 * @param \Illuminate\Http\Request $request

5 * @param \Exception $exception

6 * @return \Illuminate\Http\Response

7 */

8 public function render($request, Exception $exception)

9 {

10 if ($exception instanceof CustomException) {

11 return response()->view('errors.custom', [], 500);

12 }

13

14 return parent::render($request, $exception);

Errors & Logging 98

15 }

HTTP Exceptions

Some exceptions describe HTTP error codes from the server. For example, this may be a “page not
found” error (404), an “unauthorized error” (401) or even a developer generated 500 error. In order
to generate such a response from anywhere in your application, you may use the abort helper:

1 abort(404);

The abort helper will immediately raise an exception which will be rendered by the exception
handler. Optionally, you may provide the response text:

1 abort(403, 'Unauthorized action.');

Custom HTTP Error Pages

Laravel makes it easy to display custom error pages for various HTTP status codes. For example,
if you wish to customize the error page for 404 HTTP status codes, create a resources/views/er-
rors/404.blade.php. This file will be served on all 404 errors generated by your application. The
views within this directory should be named to match the HTTP status code they correspond to. The
HttpException instance raised by the abort function will be passed to the view as an $exception

variable.

Logging

Laravel provides a simple abstraction layer on top of the powerful Monolog⁷⁰ library. By default,
Laravel is configured to create a log file for your application in the storage/logs directory. You
may write information to the logs using the Log facade:

⁷⁰https://github.com/seldaek/monolog

https://github.com/seldaek/monolog
https://github.com/seldaek/monolog

Errors & Logging 99

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use Illuminate\Support\Facades\Log;

7 use App\Http\Controllers\Controller;

8

9 class UserController extends Controller

10 {

11 /**

12 * Show the profile for the given user.

13 *

14 * @param int $id

15 * @return Response

16 */

17 public function showProfile($id)

18 {

19 Log::info('Showing user profile for user: '.$id);

20

21 return view('user.profile', ['user' => User::findOrFail($id)]);

22 }

23 }

The logger provides the eight logging levels defined in RFC 5424⁷¹: emergency, alert, critical, error,
warning, notice, info and debug.

1 Log::emergency($message);

2 Log::alert($message);

3 Log::critical($message);

4 Log::error($message);

5 Log::warning($message);

6 Log::notice($message);

7 Log::info($message);

8 Log::debug($message);

⁷¹https://tools.ietf.org/html/rfc5424

https://tools.ietf.org/html/rfc5424
https://tools.ietf.org/html/rfc5424

Errors & Logging 100

Contextual Information

An array of contextual data may also be passed to the log methods. This contextual data will be
formatted and displayed with the log message:

1 Log::info('User failed to login.', ['id' => $user->id]);

Accessing The Underlying Monolog Instance

Monolog has a variety of additional handlers you may use for logging. If needed, you may access
the underlying Monolog instance being used by Laravel:

1 $monolog = Log::getMonolog();

Laravel Homestead
• Introduction
• Installation & Setup A> - First Steps A> - Configuring Homestead A> - Launching The Vagrant
Box A> - Per Project Installation A> - Installing MariaDB

• Daily Usage A> - Accessing Homestead Globally A> - Connecting Via SSH A> - Connecting
To Databases A> - Adding Additional Sites A> - Configuring Cron Schedules A> - Ports

• Network Interfaces

Introduction

Laravel strives to make the entire PHP development experience delightful, including your local
development environment. Vagrant⁷² provides a simple, elegant way to manage and provision
Virtual Machines.

Laravel Homestead is an official, pre-packaged Vagrant box that provides you a wonderful develop-
ment environment without requiring you to install PHP, a web server, and any other server software
on your local machine. No more worrying about messing up your operating system! Vagrant boxes
are completely disposable. If something goes wrong, you can destroy and re-create the box in
minutes!

Homestead runs on any Windows, Mac, or Linux system, and includes the Nginx web server, PHP
7.0, MySQL, Postgres, Redis, Memcached, Node, and all of the other goodies you need to develop
amazing Laravel applications.

{note} If you are using Windows, you may need to enable hardware virtualization (VT-
x). It can usually be enabled via your BIOS. If you are using Hyper-V on a UEFI system
you may additionally need to disable Hyper-V in order to access VT-x.

Included Software

• Ubuntu 16.04
• Git
• PHP 7.0
• Nginx
• MySQL

⁷²https://www.vagrantup.com

https://www.vagrantup.com/
https://www.vagrantup.com/

Laravel Homestead 102

• MariaDB
• Sqlite3
• Postgres
• Composer
• Node (With PM2, Bower, Grunt, and Gulp)
• Redis
• Memcached
• Beanstalkd

Installation & Setup

First Steps

Before launching your Homestead environment, you must install VirtualBox 5.x⁷³ or VMWare⁷⁴ as
well as Vagrant⁷⁵. All of these software packages provide easy-to-use visual installers for all popular
operating systems.

To use the VMware provider, you will need to purchase both VMware Fusion / Workstation and
the VMware Vagrant plug-in⁷⁶. Though it is not free, VMware can provide faster shared folder
performance out of the box.

Installing The Homestead Vagrant Box

Once VirtualBox / VMware and Vagrant have been installed, you should add the laravel/homestead
box to your Vagrant installation using the following command in your terminal. It will take a few
minutes to download the box, depending on your Internet connection speed:

1 vagrant box add laravel/homestead

If this command fails, make sure your Vagrant installation is up to date.

Installing Homestead

You may install Homestead by simply cloning the repository. Consider cloning the repository into
a Homestead folder within your “home” directory, as the Homestead box will serve as the host to all
of your Laravel projects:

⁷³https://www.virtualbox.org/wiki/Downloads
⁷⁴https://www.vmware.com
⁷⁵https://www.vagrantup.com/downloads.html
⁷⁶https://www.vagrantup.com/vmware

https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/vmware
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/
https://www.vagrantup.com/downloads.html
https://www.vagrantup.com/vmware

Laravel Homestead 103

1 cd ~

2

3 git clone https://github.com/laravel/homestead.git Homestead

Once you have cloned the Homestead repository, run the bash init.sh command from the
Homestead directory to create the Homestead.yaml configuration file. The Homestead.yaml file will
be placed in the ∼/.homestead hidden directory:

1 bash init.sh

Configuring Homestead

Setting Your Provider

The provider key in your ∼/.homestead/Homestead.yaml file indicates which Vagrant provider
should be used: virtualbox, vmware_fusion, or vmware_workstation. You may set this to the
provider you prefer:

1 provider: virtualbox

Configuring Shared Folders

The folders property of the Homestead.yaml file lists all of the folders you wish to share with your
Homestead environment. As files within these folders are changed, they will be kept in sync between
your local machine and the Homestead environment. You may configure as many shared folders as
necessary:

1 folders:

2 - map: ~/Code

3 to: /home/vagrant/Code

To enable NFS⁷⁷, just add a simple flag to your synced folder configuration:

⁷⁷https://www.vagrantup.com/docs/synced-folders/nfs.html

https://www.vagrantup.com/docs/synced-folders/nfs.html
https://www.vagrantup.com/docs/synced-folders/nfs.html

Laravel Homestead 104

1 folders:

2 - map: ~/Code

3 to: /home/vagrant/Code

4 type: "nfs"

You may also pass any options supported by Vagrant’s Synced Folders⁷⁸ by listing them under the
options key:

1 folders:

2 - map: ~/Code

3 to: /home/vagrant/Code

4 type: "rsync"

5 options:

6 rsync__args: ["--verbose", "--archive", "--delete", "-zz"]

7 rsync__exclude: ["node_modules"]

Configuring Nginx Sites

Not familiar with Nginx? No problem. The sites property allows you to easily map a “domain”
to a folder on your Homestead environment. A sample site configuration is included in the
Homestead.yaml file. Again, you may add as many sites to your Homestead environment as
necessary. Homestead can serve as a convenient, virtualized environment for every Laravel project
you are working on:

1 sites:

2 - map: homestead.app

3 to: /home/vagrant/Code/Laravel/public

If you change the sites property after provisioning the Homestead box, you should re-run vagrant

reload --provision to update the Nginx configuration on the virtual machine.

The Hosts File

You must add the “domains” for your Nginx sites to the hosts file on your machine. The hosts file
will redirect requests for your Homestead sites into your Homestead machine. On Mac and Linux,

⁷⁸https://www.vagrantup.com/docs/synced-folders/basic_usage.html

https://www.vagrantup.com/docs/synced-folders/basic_usage.html
https://www.vagrantup.com/docs/synced-folders/basic_usage.html

Laravel Homestead 105

this file is located at /etc/hosts. OnWindows, it is located at C:\Windows\System32\drivers\etc\hosts.
The lines you add to this file will look like the following:

1 192.168.10.10 homestead.app

Make sure the IP address listed is the one set in your∼/.homestead/Homestead.yaml file. Once you
have added the domain to your hosts file and launched the Vagrant box you will be able to access
the site via your web browser:

1 http://homestead.app

Launching The Vagrant Box

Once you have edited the Homestead.yaml to your liking, run the vagrant up command from your
Homestead directory. Vagrant will boot the virtual machine and automatically configure your shared
folders and Nginx sites.

To destroy the machine, you may use the vagrant destroy --force command.

Per Project Installation

Instead of installing Homestead globally and sharing the same Homestead box across all of your
projects, you may instead configure a Homestead instance for each project you manage. Installing
Homestead per project may be beneficial if you wish to ship a Vagrantfile with your project,
allowing others working on the project to simply vagrant up.

To install Homestead directly into your project, require it using Composer:

1 composer require laravel/homestead --dev

Once Homestead has been installed, use the make command to generate the Vagrantfile and
Homestead.yaml file in your project root. The make command will automatically configure the sites
and folders directives in the Homestead.yaml file.

Mac / Linux:

Laravel Homestead 106

1 php vendor/bin/homestead make

Windows:

1 vendor\\bin\\homestead make

Next, run the vagrant up command in your terminal and access your project at http://homestead.app
in your browser. Remember, you will still need to add an /etc/hosts file entry for homestead.app
or the domain of your choice.

Installing MariaDB

If you prefer to use MariaDB instead of MySQL, you may add the mariadb option to your
Homestead.yaml file. This option will remove MySQL and install MariaDB. MariaDB serves as
a drop-in replacement for MySQL so you should still use the mysql database driver in your
application’s database configuration:

1 box: laravel/homestead

2 ip: "192.168.20.20"

3 memory: 2048

4 cpus: 4

5 provider: virtualbox

6 mariadb: true

Daily Usage

Accessing Homestead Globally

Sometimes you may want to vagrant up your Homestead machine from anywhere on your
filesystem. You can do this by adding a simple Bash function to your Bash profile. This function
will allow you to run any Vagrant command from anywhere on your system and will automatically
point that command to your Homestead installation:

Laravel Homestead 107

1 function homestead() {

2 (cd ~/Homestead && vagrant $*)

3 }

Make sure to tweak the∼/Homestead path in the function to the location of your actual Homestead
installation. Once the function is installed, you may run commands like homestead up or homestead
ssh from anywhere on your system.

Connecting Via SSH

You can SSH into your virtual machine by issuing the vagrant ssh terminal command from your
Homestead directory.

But, since you will probably need to SSH into your Homestead machine frequently, consider adding
the “function” described above to your host machine to quickly SSH into the Homestead box.

Connecting To Databases

A homestead database is configured for both MySQL and Postgres out of the box. For even more
convenience, Laravel’s .env file configures the framework to use this database out of the box.

To connect to your MySQL or Postgres database from your host machine via Navicat or Sequel Pro,
you should connect to 127.0.0.1 and port 33060 (MySQL) or 54320 (Postgres). The username and
password for both databases is homestead / secret.

{note} You should only use these non-standard ports when connecting to the databases
from your host machine. You will use the default 3306 and 5432 ports in your Laravel
database configuration file since Laravel is running within the virtual machine.

Adding Additional Sites

Once your Homestead environment is provisioned and running, you may want to add additional
Nginx sites for your Laravel applications. You can run as many Laravel installations as you
wish on a single Homestead environment. To add an additional site, simply add the site to
your∼/.homestead/Homestead.yaml file and then run the vagrant reload --provision terminal
command from your Homestead directory.

Laravel Homestead 108

Configuring Cron Schedules

Laravel provides a convenient way to schedule Cron jobs by scheduling a single schedule:run

Artisan command to be run every minute. The schedule:run command will examine the job
schedule defined in your App\Console\Kernel class to determine which jobs should be run.

If you would like the schedule:run command to be run for a Homestead site, you may set the
schedule option to true when defining the site:

1 sites:

2 - map: homestead.app

3 to: /home/vagrant/Code/Laravel/public

4 schedule: true

The Cron job for the site will be defined in the /etc/cron.d folder of the virtual machine.

Ports

By default, the following ports are forwarded to your Homestead environment:

• SSH: 2222→ Forwards To 22
• HTTP: 8000→ Forwards To 80
• HTTPS: 44300→ Forwards To 443
• MySQL: 33060→ Forwards To 3306
• Postgres: 54320→ Forwards To 5432

Forwarding Additional Ports

If you wish, you may forward additional ports to the Vagrant box, as well as specify their protocol:

1 ports:

2 - send: 93000

3 to: 9300

4 - send: 7777

5 to: 777

6 protocol: udp

Laravel Homestead 109

Network Interfaces

The networks property of the Homestead.yaml configures network interfaces for your Homestead
environment. You may configure as many interfaces as necessary:

1 networks:

2 - type: "private_network"

3 ip: "192.168.10.20"

To enable a bridged⁷⁹ interface, configure a bridge setting and change the network type to public_-
network:

1 networks:

2 - type: "public_network"

3 ip: "192.168.10.20"

4 bridge: "en1: Wi-Fi (AirPort)"

To enable DHCP⁸⁰, just remove the ip option from your configuration:

1 networks:

2 - type: "public_network"

3 bridge: "en1: Wi-Fi (AirPort)"

⁷⁹https://www.vagrantup.com/docs/networking/public_network.html
⁸⁰https://www.vagrantup.com/docs/networking/public_network.html

https://www.vagrantup.com/docs/networking/public_network.html
https://www.vagrantup.com/docs/networking/public_network.html
https://www.vagrantup.com/docs/networking/public_network.html
https://www.vagrantup.com/docs/networking/public_network.html

Laravel Valet
• Introduction A> - Valet Or Homestead
• Installation A> - Upgrading
• Serving Sites A> - The “Park” Command A> - The “Link” Command A> - Securing Sites With
TLS

• Sharing Sites
• Viewing Logs
• Custom Valet Drivers
• Other Valet Commands

Introduction

Valet is a Laravel development environment forMacminimalists. No Vagrant, NoApache, NoNginx,
No /etc/hosts file. You can even share your sites publicly using local tunnels. Yeah, we like it too.

Laravel Valet configures your Mac to always run Caddy⁸¹ in the background when your machine
starts. Then, using DnsMasq⁸², Valet proxies all requests on the *.dev domain to point to sites
installed on your local machine.

In other words, a blazing fast Laravel development environment that uses roughly 7 MB of RAM.
Valet isn’t a complete replacement for Vagrant or Homestead, but provides a great alternative if you
want flexible basics, prefer extreme speed, or are working on a machine with a limited amount of
RAM.

Out of the box, Valet support includes, but is not limited to:

<div class=”content-list” markdown=”1”> - Laravel⁸³ - Lumen⁸⁴ - Symfony⁸⁵ - Zend⁸⁶ - CakePHP 3⁸⁷
- WordPress⁸⁸ - Bedrock⁸⁹ - Craft⁹⁰ - Statamic⁹¹ - Jigsaw⁹² - Static HTML </div>

However, you may extend Valet with your own custom drivers.

⁸¹https://caddyserver.com
⁸²https://en.wikipedia.org/wiki/Dnsmasq
⁸³https://laravel.com
⁸⁴https://lumen.laravel.com
⁸⁵https://symfony.com
⁸⁶https://framework.zend.com
⁸⁷https://cakephp.org
⁸⁸https://wordpress.org
⁸⁹https://roots.io/bedrock/
⁹⁰https://craftcms.com
⁹¹https://statamic.com
⁹²http://jigsaw.tighten.co

https://caddyserver.com/
https://en.wikipedia.org/wiki/Dnsmasq
https://laravel.com/
https://lumen.laravel.com/
https://symfony.com/
https://framework.zend.com/
https://cakephp.org/
https://wordpress.org/
https://roots.io/bedrock/
https://craftcms.com/
https://statamic.com/
http://jigsaw.tighten.co/
https://caddyserver.com/
https://en.wikipedia.org/wiki/Dnsmasq
https://laravel.com/
https://lumen.laravel.com/
https://symfony.com/
https://framework.zend.com/
https://cakephp.org/
https://wordpress.org/
https://roots.io/bedrock/
https://craftcms.com/
https://statamic.com/
http://jigsaw.tighten.co/

Laravel Valet 111

Valet Or Homestead

As you may know, Laravel offers Homestead, another local Laravel development environment.
Homestead and Valet differ in regards to their intended audience and their approach to local devel-
opment. Homestead offers an entire Ubuntu virtual machine with automated Nginx configuration.
Homestead is a wonderful choice if you want a fully virtualized Linux development environment
or are on Windows / Linux.

Valet only supports Mac, and requires you to install PHP and a database server directly onto your
local machine. This is easily achieved by using Homebrew⁹³ with commands like brew install

php70 and brew install mariadb. Valet provides a blazing fast local development environment
with minimal resource consumption, so it’s great for developers who only require PHP / MySQL
and do not need a fully virtualized development environment.

Both Valet and Homestead are great choices for configuring your Laravel development environment.
Which one you choose will depend on your personal taste and your team’s needs.

Installation

Valet requires macOS and Homebrew⁹⁴. Before installation, you should make sure that no
other programs such as Apache or Nginx are binding to your local machine’s port 80.

<div class=”content-list” markdown=”1”> - Install or update Homebrew⁹⁵ to the latest version using
brew update. - Install PHP 7.0 using Homebrew via brew install homebrew/php/php70. - Install
Valet with Composer via composer global require laravel/valet. Make sure the∼/.composer/vendor/bin

directory is in your system’s “PATH”. - Run the valet install command. This will configure and
install Valet and DnsMasq, and register Valet’s daemon to launch when your system starts. </div>

Once Valet is installed, try pinging any *.dev domain on your terminal using a command such as
ping foobar.dev. If Valet is installed correctly you should see this domain responding on 127.0.0.1.

Valet will automatically start its daemon each time your machine boots. There is no need to run
valet start or valet install ever again once the initial Valet installation is complete.

Using Another Domain

By default, Valet serves your projects using the .dev TLD. If you’d like to use another domain, you
can do so using the valet domain tld-name command.

For example, if you’d like to use .app instead of .dev, run valet domain app and Valet will start
serving your projects at *.app automatically.

⁹³http://brew.sh/
⁹⁴http://brew.sh/
⁹⁵http://brew.sh/

http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/
http://brew.sh/

Laravel Valet 112

Database

If you need a database, try MariaDB by running brew install mariadb on your command line.
Once MariaDB has been installed, you may start it using the brew services start mariadb

command. You can then connect to the database at 127.0.0.1 using the root username and an
empty string for the password.

Upgrading

You may update your Valet installation using the composer global update command in your
terminal. After upgrading, it is good practice to run the valet install command so Valet can make
additional upgrades to your configuration files if necessary.

Serving Sites

Once Valet is installed, you’re ready to start serving sites. Valet provides two commands to help you
serve your Laravel sites: park and link.

 The park Command

<div class=”content-list” markdown=”1”> - Create a new directory on your Mac by running
something like mkdir ∼/Sites. Next, cd ∼/Sites and run valet park. This commandwill register
your current working directory as a path that Valet should search for sites. - Next, create a new
Laravel site within this directory: laravel new blog. - Open http://blog.dev in your browser.
</div>

That’s all there is to it. Now, any Laravel project you create within your “parked” directory will
automatically be served using the http://folder-name.dev convention.

 The link Command

The link command may also be used to serve your Laravel sites. This command is useful if you
want to serve a single site in a directory and not the entire directory.

<div class=”content-list” markdown=”1”> - To use the command, navigate to one of your projects and
run valet link app-name in your terminal. Valet will create a symbolic link in ∼/.valet/Sites

which points to your current working directory. - After running the link command, you can access
the site in your browser at http://app-name.dev. </div>

To see a listing of all of your linked directories, run the valet links command. You may use valet
unlink app-name to destroy the symbolic link.

{tip} You can use valet link to serve the same project from multiple (sub)domains. To
add a subdomain or another domain to your project run valet link subdomain.app-

name from the project folder.

Laravel Valet 113

 Securing Sites With TLS

By default, Valet serves sites over plain HTTP. However, if you would like to serve a site over
encrypted TLS using HTTP/2, use the secure command. For example, if your site is being served by
Valet on the laravel.dev domain, you should run the following command to secure it:

1 valet secure laravel

To “unsecure” a site and revert back to serving its traffic over plain HTTP, use the unsecure

command. Like the secure command, this command accepts the host name that you wish to
unsecure:

1 valet unsecure laravel

Sharing Sites

Valet even includes a command to share your local sites with the world. No additional software
installation is required once Valet is installed.

To share a site, navigate to the site’s directory in your terminal and run the valet share command.
A publicly accessible URL will be inserted into your clipboard and is ready to paste directly into
your browser. That’s it.

To stop sharing your site, hit Control + C to cancel the process.

Viewing Logs

If you would like to stream all of the logs for all of your sites to your terminal, run the valet logs

command. New log entries will display in your terminal as they occur. This is a great way to stay
on top of all of your log files without ever having to leave your terminal.

Custom Valet Drivers

You can write your own Valet “driver” to serve PHP applications running on another framework
or CMS that is not natively supported by Valet. When you install Valet, a ∼/.valet/Drivers

directory is created which contains a SampleValetDriver.php file. This file contains a sample driver
implementation to demonstrate how to write a custom driver. Writing a driver only requires you to
implement three methods: serves, isStaticFile, and frontControllerPath.

Laravel Valet 114

All three methods receive the $sitePath, $siteName, and $uri values as their arguments. The
$sitePath is the fully qualified path to the site being served on yourmachine, such as /Users/Lisa/Sites/my-
project. The $siteName is the “host” / “site name” portion of the domain (my-project). The $uri is
the incoming request URI (/foo/bar).

Once you have completed your custom Valet driver, place it in the ∼/.valet/Drivers directory
using the FrameworkValetDriver.php naming convention. For example, if you are writing a custom
valet driver for WordPress, your file name should be WordPressValetDriver.php.

Let’s take a look at a sample implementation of each method your custom Valet driver should
implement.

The serves Method

The serves method should return true if your driver should handle the incoming request.
Otherwise, the method should return false. So, within this method you should attempt to determine
if the given $sitePath contains a project of the type you are trying to serve.

For example, let’s pretend we are writing a WordPressValetDriver. Our serve method might look
something like this:

1 /**

2 * Determine if the driver serves the request.

3 *

4 * @param string $sitePath

5 * @param string $siteName

6 * @param string $uri

7 * @return void

8 */

9 public function serves($sitePath, $siteName, $uri)

10 {

11 return is_dir($sitePath.'/wp-admin');

12 }

The isStaticFileMethod

The isStaticFile should determine if the incoming request is for a file that is “static”, such as an
image or a stylesheet. If the file is static, the method should return the fully qualified path to the
static file on disk. If the incoming request is not for a static file, the method should return false:

Laravel Valet 115

1 /**

2 * Determine if the incoming request is for a static file.

3 *

4 * @param string $sitePath

5 * @param string $siteName

6 * @param string $uri

7 * @return string|false

8 */

9 public function isStaticFile($sitePath, $siteName, $uri)

10 {

11 if (file_exists($staticFilePath = $sitePath.'/public/'.$uri)) {

12 return $staticFilePath;

13 }

14

15 return false;

16 }

{note} The isStaticFilemethod will only be called if the servesmethod returns true
for the incoming request and the request URI is not /.

The frontControllerPathMethod

The frontControllerPathmethod should return the fully qualified path to your application’s “front
controller”, which is typically your “index.php” file or equivalent:

1 /**

2 * Get the fully resolved path to the application's front controller.

3 *

4 * @param string $sitePath

5 * @param string $siteName

6 * @param string $uri

7 * @return string

8 */

9 public function frontControllerPath($sitePath, $siteName, $uri)

10 {

11 return $sitePath.'/public/index.php';

12 }

Laravel Valet 116

Other Valet Commands

Command | Description ————- | ————- valet forget | Run this command from a “parked”
directory to remove it from the parked directory list. valet paths | View all of your “parked” paths.
valet restart | Restart the Valet daemon. valet start | Start the Valet daemon. valet stop | Stop
the Valet daemon. valet uninstall | Uninstall the Valet daemon entirely.

Service Container
• Introduction
• Binding A> - Binding Basics A> - Binding Interfaces To Implementations A> - Contextual
Binding A> - Tagging

• Resolving A> - The Make Method A> - Automatic Injection
• Container Events

Introduction

The Laravel service container is a powerful tool for managing class dependencies and performing
dependency injection. Dependency injection is a fancy phrase that essentially means this: class
dependencies are “injected” into the class via the constructor or, in some cases, “setter” methods.

Let’s look at a simple example:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use App\Repositories\UserRepository;

7 use App\Http\Controllers\Controller;

8

9 class UserController extends Controller

10 {

11 /**

12 * The user repository implementation.

13 *

14 * @var UserRepository

15 */

16 protected $users;

17

18 /**

19 * Create a new controller instance.

20 *

21 * @param UserRepository $users

22 * @return void

23 */

Service Container 118

24 public function __construct(UserRepository $users)

25 {

26 $this->users = $users;

27 }

28

29 /**

30 * Show the profile for the given user.

31 *

32 * @param int $id

33 * @return Response

34 */

35 public function show($id)

36 {

37 $user = $this->users->find($id);

38

39 return view('user.profile', ['user' => $user]);

40 }

41 }

In this example, the UserController needs to retrieve users from a data source. So, we will inject a
service that is able to retrieve users. In this context, our UserRepository most likely uses Eloquent
to retrieve user information from the database. However, since the repository is injected, we are able
to easily swap it out with another implementation. We are also able to easily “mock”, or create a
dummy implementation of the UserRepository when testing our application.

A deep understanding of the Laravel service container is essential to building a powerful, large
application, as well as for contributing to the Laravel core itself.

Binding

Binding Basics

Almost all of your service container bindings will be registered within service providers, so most of
these examples will demonstrate using the container in that context.

{tip} There is no need to bind classes into the container if they do not depend on any
interfaces. The container does not need to be instructed on how to build these objects,
since it can automatically resolve these objects using reflection.

Service Container 119

Simple Bindings

Within a service provider, you always have access to the container via the $this->app property. We
can register a binding using the bind method, passing the class or interface name that we wish to
register along with a Closure that returns an instance of the class:

1 $this->app->bind('HelpSpot\API', function ($app) {

2 return new HelpSpot\API($app->make('HttpClient'));

3 });

Note that we receive the container itself as an argument to the resolver.We can then use the container
to resolve sub-dependencies of the object we are building.

Binding A Singleton

The singletonmethod binds a class or interface into the container that should only be resolved one
time. Once a singleton binding is resolved, the same object instance will be returned on subsequent
calls into the container:

1 $this->app->singleton('HelpSpot\API', function ($app) {

2 return new HelpSpot\API($app->make('HttpClient'));

3 });

Binding Instances

You may also bind an existing object instance into the container using the instance method. The
given instance will always be returned on subsequent calls into the container:

1 $api = new HelpSpot\API(new HttpClient);

2

3 $this->app->instance('HelpSpot\Api', $api);

Binding Primitives

Sometimes you may have a class that receives some injected classes, but also needs an injected
primitive value such as an integer. You may easily use contextual binding to inject any value your
class may need:

Service Container 120

1 $this->app->when('App\Http\Controllers\UserController')

2 ->needs('$variableName')

3 ->give($value);

Binding Interfaces To Implementations

A very powerful feature of the service container is its ability to bind an interface to a given imple-
mentation. For example, let’s assume we have an EventPusher interface and a RedisEventPusher

implementation. Once we have coded our RedisEventPusher implementation of this interface, we
can register it with the service container like so:

1 $this->app->bind(

2 'App\Contracts\EventPusher',

3 'App\Services\RedisEventPusher'

4);

This statement tells the container that it should inject the RedisEventPusher when a class needs an
implementation of EventPusher. Now we can type-hint the EventPusher interface in a constructor,
or any other location where dependencies are injected by the service container:

1 use App\Contracts\EventPusher;

2

3 /**

4 * Create a new class instance.

5 *

6 * @param EventPusher $pusher

7 * @return void

8 */

9 public function __construct(EventPusher $pusher)

10 {

11 $this->pusher = $pusher;

12 }

Service Container 121

Contextual Binding

Sometimes you may have two classes that utilize the same interface, but you wish to inject
different implementations into each class. For example, two controllers may depend on different
implementations of the Illuminate\Contracts\Filesystem\Filesystem contract. Laravel provides
a simple, fluent interface for defining this behavior:

1 use Illuminate\Support\Facades\Storage;

2 use App\Http\Controllers\PhotoController;

3 use App\Http\Controllers\VideoController;

4 use Illuminate\Contracts\Filesystem\Filesystem;

5

6 $this->app->when(PhotoController::class)

7 ->needs(Filesystem::class)

8 ->give(function () {

9 return Storage::disk('local');

10 });

11

12 $this->app->when(VideoController::class)

13 ->needs(Filesystem::class)

14 ->give(function () {

15 return Storage::disk('s3');

16 });

Tagging

Occasionally, you may need to resolve all of a certain “category” of binding. For example, perhaps
you are building a report aggregator that receives an array of many different Report interface
implementations. After registering the Report implementations, you can assign them a tag using
the tag method:

1 $this->app->bind('SpeedReport', function () {

2 //

3 });

4

5 $this->app->bind('MemoryReport', function () {

6 //

7 });

Service Container 122

8

9 $this->app->tag(['SpeedReport', 'MemoryReport'], 'reports');

Once the services have been tagged, you may easily resolve them all via the tagged method:

1 $this->app->bind('ReportAggregator', function ($app) {

2 return new ReportAggregator($app->tagged('reports'));

3 });

Resolving

The make Method

You may use the make method to resolve a class instance out of the container. The make method
accepts the name of the class or interface you wish to resolve:

1 $api = $this->app->make('HelpSpot\API');

If you are in a location of your code that does not have access to the $app variable, you may use the
global resolve helper:

1 $api = resolve('HelpSpot\API');

Automatic Injection

Alternatively, and importantly, you may simply “type-hint” the dependency in the constructor of a
class that is resolved by the container, including controllers, event listeners, queue jobs, middleware,
and more. In practice, this is how most of your objects should be resolved by the container.

For example, you may type-hint a repository defined by your application in a controller’s construc-
tor. The repository will automatically be resolved and injected into the class:

Service Container 123

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Users\Repository as UserRepository;

6

7 class UserController extends Controller

8 {

9 /**

10 * The user repository instance.

11 */

12 protected $users;

13

14 /**

15 * Create a new controller instance.

16 *

17 * @param UserRepository $users

18 * @return void

19 */

20 public function __construct(UserRepository $users)

21 {

22 $this->users = $users;

23 }

24

25 /**

26 * Show the user with the given ID.

27 *

28 * @param int $id

29 * @return Response

30 */

31 public function show($id)

32 {

33 //

34 }

35 }

Container Events

The service container fires an event each time it resolves an object. You may listen to this event
using the resolving method:

Service Container 124

1 $this->app->resolving(function ($object, $app) {

2 // Called when container resolves object of any type...

3 });

4

5 $this->app->resolving(HelpSpot\API::class, function ($api, $app) {

6 // Called when container resolves objects of type "HelpSpot\API"...

7 });

As you can see, the object being resolved will be passed to the callback, allowing you to set any
additional properties on the object before it is given to its consumer.

Service Providers
• Introduction
• Writing Service Providers A> - The Register Method A> - The Boot Method
• Registering Providers
• Deferred Providers

Introduction

Service providers are the central place of all Laravel application bootstrapping. Your own application,
as well as all of Laravel’s core services are bootstrapped via service providers.

But, what do we mean by “bootstrapped”? In general, we mean registering things, including reg-
istering service container bindings, event listeners, middleware, and even routes. Service providers
are the central place to configure your application.

If you open the config/app.php file included with Laravel, you will see a providers array. These
are all of the service provider classes that will be loaded for your application. Of course, many of
these are “deferred” providers, meaning they will not be loaded on every request, but only when the
services they provide are actually needed.

In this overview you will learn how to write your own service providers and register them with
your Laravel application.

Writing Service Providers

All service providers extend the Illuminate\Support\ServiceProvider class.Most service providers
contain a register and a bootmethod. Within the registermethod, you should only bind things
into the service container. You should never attempt to register any event listeners, routes, or any
other piece of functionality within the register method.

The Artisan CLI can generate a new provider via the make:provider command:

1 php artisan make:provider RiakServiceProvider

Service Providers 126

The Register Method

As mentioned previously, within the registermethod, you should only bind things into the service
container. You should never attempt to register any event listeners, routes, or any other piece of
functionality within the register method. Otherwise, you may accidentally use a service that is
provided by a service provider which has not loaded yet.

Let’s take a look at a basic service provider.Within any of your service provider methods, you always
have access to the $app property which provides access to the service container:

1 <?php

2

3 namespace App\Providers;

4

5 use Riak\Connection;

6 use Illuminate\Support\ServiceProvider;

7

8 class RiakServiceProvider extends ServiceProvider

9 {

10 /**

11 * Register bindings in the container.

12 *

13 * @return void

14 */

15 public function register()

16 {

17 $this->app->singleton(Connection::class, function ($app) {

18 return new Connection(config('riak'));

19 });

20 }

21 }

This service provider only defines a register method, and uses that method to define an imple-
mentation of Riak\Connection in the service container. If you don’t understand how the service
container works, check out its documentation.

The Boot Method

So, what if we need to register a view composer within our service provider? This should be
done within the boot method. This method is called after all other service providers have
been registered, meaning you have access to all other services that have been registered by the
framework:

Service Providers 127

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\ServiceProvider;

6

7 class ComposerServiceProvider extends ServiceProvider

8 {

9 /**

10 * Bootstrap any application services.

11 *

12 * @return void

13 */

14 public function boot()

15 {

16 view()->composer('view', function () {

17 //

18 });

19 }

20 }

Boot Method Dependency Injection

Youmay type-hint dependencies for your service provider’s bootmethod. The service container will
automatically inject any dependencies you need:

1 use Illuminate\Contracts\Routing\ResponseFactory;

2

3 public function boot(ResponseFactory $response)

4 {

5 $response->macro('caps', function ($value) {

6 //

7 });

8 }

Service Providers 128

Registering Providers

All service providers are registered in the config/app.php configuration file. This file contains a
providers array where you can list the class names of your service providers. By default, a set of
Laravel core service providers are listed in this array. These providers bootstrap the core Laravel
components, such as the mailer, queue, cache, and others.

To register your provider, simply add it to the array:

1 'providers' => [

2 // Other Service Providers

3

4 App\Providers\ComposerServiceProvider::class,

5],

Deferred Providers

If your provider is only registering bindings in the service container, you may choose to defer its
registration until one of the registered bindings is actually needed. Deferring the loading of such a
provider will improve the performance of your application, since it is not loaded from the filesystem
on every request.

Laravel compiles and stores a list of all of the services supplied by deferred service providers, along
with the name of its service provider class. Then, only when you attempt to resolve one of these
services does Laravel load the service provider.

To defer the loading of a provider, set the defer property to true and define a provides method.
The provides method should return the service container bindings registered by the provider:

1 <?php

2

3 namespace App\Providers;

4

5 use Riak\Connection;

6 use Illuminate\Support\ServiceProvider;

7

8 class RiakServiceProvider extends ServiceProvider

9 {

10 /**

11 * Indicates if loading of the provider is deferred.

12 *

Service Providers 129

13 * @var bool

14 */

15 protected $defer = true;

16

17 /**

18 * Register the service provider.

19 *

20 * @return void

21 */

22 public function register()

23 {

24 $this->app->singleton(Connection::class, function ($app) {

25 return new Connection($app['config']['riak']);

26 });

27 }

28

29 /**

30 * Get the services provided by the provider.

31 *

32 * @return array

33 */

34 public function provides()

35 {

36 return [Connection::class];

37 }

38

39 }

Facades
• Introduction
• When To Use Facades A> - Facades Vs. Dependency Injection A> - Facades Vs. Helper
Functions

• How Facades Work
• Facade Class Reference

Introduction

Facades provide a “static” interface to classes that are available in the application’s service container.
Laravel ships with many facades which provide access to almost all of Laravel’s features. Laravel
facades serve as “static proxies” to underlying classes in the service container, providing the benefit
of a terse, expressive syntax while maintaining more testability and flexibility than traditional static
methods.

All of Laravel’s facades are defined in the Illuminate\Support\Facades namespace. So, we can
easily access a facade like so:

1 use Illuminate\Support\Facades\Cache;

2

3 Route::get('/cache', function () {

4 return Cache::get('key');

5 });

Throughout the Laravel documentation, many of the examples will use facades to demonstrate
various features of the framework.

When To Use Facades

Facades havemany benefits. They provide a terse, memorable syntax that allows you to use Laravel’s
features without remembering long class names that must be injected or configured manually.
Furthermore, because of their unique usage of PHP’s dynamic methods, they are easy to test.

However, some care must be taken when using facades. The primary danger of facades is class
scope creep. Since facades are so easy to use and do not require injection, it can be easy to let your

Facades 131

classes continue to grow and use many facades in a single class. Using dependency injection, this
potential is mitigated by the visual feedback a large constructor gives you that your class is growing
too large. So, when using facades, pay special attention to the size of your class so that its scope of
responsibility stays narrow.

{tip}When building a third-party package that interacts with Laravel, it’s better to inject
Laravel contracts instead of using facades. Since packages are built outside of Laravel
itself, you will not have access to Laravel’s facade testing helpers.

Facades Vs. Dependency Injection

One of the primary benefits of dependency injection is the ability to swap implementations of the
injected class. This is useful during testing since you can inject a mock or stub and assert that various
methods were called on the stub.

Typically, it would not be possible to mock or stub a truly static class method. However, since
facades use dynamic methods to proxy method calls to objects resolved from the service container,
we actually can test facades just as we would test an injected class instance. For example, given the
following route:

1 use Illuminate\Support\Facades\Cache;

2

3 Route::get('/cache', function () {

4 return Cache::get('key');

5 });

We can write the following test to verify that the Cache::getmethod was called with the argument
we expected:

1 use Illuminate\Support\Facades\Cache;

2

3 /**

4 * A basic functional test example.

5 *

6 * @return void

7 */

8 public function testBasicExample()

9 {

10 Cache::shouldReceive('get')

11 ->with('key')

12 ->andReturn('value');

Facades 132

13

14 $this->visit('/cache')

15 ->see('value');

16 }

Facades Vs. Helper Functions

In addition to facades, Laravel includes a variety of “helper” functions which can perform common
tasks like generating views, firing events, dispatching jobs, or sending HTTP responses. Many of
these helper functions perform the same function as a corresponding facade. For example, this facade
call and helper call are equivalent:

1 return View::make('profile');

2

3 return view('profile');

There is absolutely no practical difference between facades and helper functions. When using helper
functions, youmay still test them exactly as youwould the corresponding facade. For example, given
the following route:

1 Route::get('/cache', function () {

2 return cache('key');

3 });

Under the hood, the cache helper is going to call the get method on the class underlying the Cache
facade. So, even though we are using the helper function, we can write the following test to verify
that the method was called with the argument we expected:

1 use Illuminate\Support\Facades\Cache;

2

3 /**

4 * A basic functional test example.

5 *

6 * @return void

7 */

Facades 133

8 public function testBasicExample()

9 {

10 Cache::shouldReceive('get')

11 ->with('key')

12 ->andReturn('value');

13

14 $this->visit('/cache')

15 ->see('value');

16 }

How Facades Work

In a Laravel application, a facade is a class that provides access to an object from the container. The
machinery that makes this work is in the Facade class. Laravel’s facades, and any custom facades
you create, will extend the base Illuminate\Support\Facades\Facade class.

The Facade base class makes use of the __callStatic() magic-method to defer calls from your
facade to an object resolved from the container. In the example below, a call is made to the Laravel
cache system. By glancing at this code, one might assume that the static method get is being called
on the Cache class:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Cache;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param int $id

14 * @return Response

15 */

16 public function showProfile($id)

17 {

18 $user = Cache::get('user:'.$id);

19

20 return view('profile', ['user' => $user]);

Facades 134

21 }

22 }

Notice that near the top of the file we are “importing” the Cache facade. This facade serves as a
proxy to accessing the underlying implementation of the Illuminate\Contracts\Cache\Factory

interface. Any calls we make using the facade will be passed to the underlying instance of Laravel’s
cache service.

If we look at that Illuminate\Support\Facades\Cache class, you’ll see that there is no static method
get:

1 class Cache extends Facade

2 {

3 /**

4 * Get the registered name of the component.

5 *

6 * @return string

7 */

8 protected static function getFacadeAccessor() { return 'cache'; }

9 }

Instead, the Cache facade extends the base Facade class and defines the method getFacadeAcces-

sor(). This method’s job is to return the name of a service container binding.When a user references
any static method on the Cache facade, Laravel resolves the cache binding from the service container
and runs the requested method (in this case, get) against that object.

Facades 135

Facade Class Reference

Below youwill find every facade and its underlying class. This is a useful tool for quickly digging into
the API documentation for a given facade root. The service container binding key is also included
where applicable.

Facade Class Service Container Binding

App IlluminateFoundationApplication⁹⁶app
Artisan IlluminateContractsConsoleKernel⁹⁷artisan

Auth IlluminateAuthAuthManager⁹⁸ auth

Blade IlluminateViewCompilersBladeCompiler⁹⁹blade.compiler

Bus IlluminateContractsBusDispatcher¹⁰⁰
Cache IlluminateCacheRepository¹⁰¹ cache

Config IlluminateConfigRepository¹⁰² config

Cookie IlluminateCookieCookieJar¹⁰³ cookie

Crypt IlluminateEncryptionEncrypter¹⁰⁴encrypter
DB IlluminateDatabaseDatabaseManager¹⁰⁵db

DB (Instance) IlluminateDatabaseConnection¹⁰⁶
Event IlluminateEventsDispatcher¹⁰⁷ events

File IlluminateFilesystemFilesystem¹⁰⁸files
Gate IlluminateContractsAuthAccessGate¹⁰⁹
Hash IlluminateContractsHashingHasher¹¹⁰hash

⁹⁶https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Foundation/Application.html

⁹⁷https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Contracts/Console/Kernel.html

⁹⁸https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Auth/AuthManager.html

⁹⁹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
View/Compilers/BladeCompiler.html
¹⁰⁰https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Bus/Dispatcher.html
¹⁰¹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Cache/Repository.html
¹⁰²https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Config/Repository.html
¹⁰³https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Cookie/CookieJar.html
¹⁰⁴https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Encryption/Encrypter.html
¹⁰⁵https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Database/DatabaseManager.html
¹⁰⁶https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Database/Connection.html
¹⁰⁷https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Events/Dispatcher.html
¹⁰⁸https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Filesystem/Filesystem.html
¹⁰⁹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Auth/Access/Gate.html
¹¹⁰https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Hashing/Hasher.html

https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Foundation/Application.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Console/Kernel.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Auth/AuthManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/Compilers/BladeCompiler.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Bus/Dispatcher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Cache/Repository.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Config/Repository.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Cookie/CookieJar.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Encryption/Encrypter.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/DatabaseManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/Connection.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Events/Dispatcher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Filesystem/Filesystem.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Auth/Access/Gate.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Hashing/Hasher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Foundation/Application.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Foundation/Application.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Console/Kernel.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Console/Kernel.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Auth/AuthManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Auth/AuthManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/Compilers/BladeCompiler.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/Compilers/BladeCompiler.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Bus/Dispatcher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Bus/Dispatcher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Cache/Repository.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Cache/Repository.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Config/Repository.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Config/Repository.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Cookie/CookieJar.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Cookie/CookieJar.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Encryption/Encrypter.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Encryption/Encrypter.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/DatabaseManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/DatabaseManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/Connection.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/Connection.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Events/Dispatcher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Events/Dispatcher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Filesystem/Filesystem.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Filesystem/Filesystem.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Auth/Access/Gate.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Auth/Access/Gate.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Hashing/Hasher.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Hashing/Hasher.html

Facades 136

Facade Class Service Container Binding

Lang IlluminateTranslationTranslator¹¹¹translator
Log IlluminateLogWriter¹¹² log

Mail IlluminateMailMailer¹¹³ mailer

Notification IlluminateNotificationsChannelManager¹¹⁴
Password IlluminateAuthPasswordsPasswordBrokerManager¹¹⁵auth.password

Queue IlluminateQueueQueueManager¹¹⁶queue
Queue (Instance) IlluminateContractsQueueQueue¹¹⁷queue
Queue (Base Class) IlluminateQueueQueue¹¹⁸
Redirect IlluminateRoutingRedirector¹¹⁹ redirect

Redis IlluminateRedisDatabase¹²⁰ redis

Request IlluminateHttpRequest¹²¹ request

Response IlluminateContractsRoutingResponseFactory¹²²
Route IlluminateRoutingRouter¹²³ router

Schema IlluminateDatabaseSchemaBlueprint¹²⁴
Session IlluminateSessionSessionManager¹²⁵session

Session (Instance) IlluminateSessionStore¹²⁶
Storage IlluminateContractsFilesystemFactory¹²⁷filesystem

URL IlluminateRoutingUrlGenerator¹²⁸url

¹¹¹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Translation/Translator.html
¹¹²https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Log/Writer.html
¹¹³https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Mail/Mailer.html
¹¹⁴https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Notifications/ChannelManager.html
¹¹⁵https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Auth/Passwords/PasswordBrokerManager.html
¹¹⁶https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Queue/QueueManager.html
¹¹⁷https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Queue/Queue.html
¹¹⁸https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Queue/Queue.html
¹¹⁹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/Redirector.html
¹²⁰https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Redis/Database.html
¹²¹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Http/Request.html
¹²²https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Routing/ResponseFactory.html
¹²³https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/Router.html
¹²⁴https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Database/Schema/Blueprint.html
¹²⁵https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Session/SessionManager.html
¹²⁶https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Session/Store.html
¹²⁷https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Contracts/Filesystem/Factory.html
¹²⁸https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/UrlGenerator.html

https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Translation/Translator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Log/Writer.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Mail/Mailer.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Notifications/ChannelManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Auth/Passwords/PasswordBrokerManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Queue/QueueManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Queue/Queue.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Queue/Queue.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Redirector.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Redis/Database.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Http/Request.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Routing/ResponseFactory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Router.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/Schema/Blueprint.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Session/SessionManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Session/Store.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Filesystem/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/UrlGenerator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Translation/Translator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Translation/Translator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Log/Writer.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Log/Writer.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Mail/Mailer.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Mail/Mailer.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Notifications/ChannelManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Notifications/ChannelManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Auth/Passwords/PasswordBrokerManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Auth/Passwords/PasswordBrokerManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Queue/QueueManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Queue/QueueManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Queue/Queue.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Queue/Queue.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Queue/Queue.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Queue/Queue.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Redirector.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Redirector.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Redis/Database.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Redis/Database.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Http/Request.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Http/Request.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Routing/ResponseFactory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Routing/ResponseFactory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Router.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Router.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/Schema/Blueprint.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Database/Schema/Blueprint.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Session/SessionManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Session/SessionManager.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Session/Store.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Session/Store.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Filesystem/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Contracts/Filesystem/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/UrlGenerator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/UrlGenerator.html

Facades 137

Facade Class Service Container Binding

Validator IlluminateValidationFactory¹²⁹ validator

Validator (Instance) IlluminateValidationValidator¹³⁰
View IlluminateViewFactory¹³¹ view

View (Instance) IlluminateViewView¹³²

¹²⁹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Validation/Factory.html
¹³⁰https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Validation/Validator.html
¹³¹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

View/Factory.html
¹³²https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

View/View.html

https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Validation/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Validation/Validator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/View.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Validation/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Validation/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Validation/Validator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Validation/Validator.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/Factory.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/View.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/View/View.html

Contracts
• Introduction A> - Contracts Vs. Facades
• When To Use Contracts A> - Loose Coupling A> - Simplicity
• How To Use Contracts
• Contract Reference

Introduction

Laravel’s Contracts are a set of interfaces that define the core services provided by the framework.
For example, a Illuminate\Contracts\Queue\Queue contract defines the methods needed for
queueing jobs, while the Illuminate\Contracts\Mail\Mailer contract defines the methods needed
for sending e-mail.

Each contract has a corresponding implementation provided by the framework. For example, Laravel
provides a queue implementation with a variety of drivers, and a mailer implementation that is
powered by SwiftMailer¹³³.

All of the Laravel contracts live in their own GitHub repository¹³⁴. This provides a quick reference
point for all available contracts, as well as a single, decoupled package that may be utilized by
package developers.

Contracts Vs. Facades

Laravel’s facades and helper functions provide a simple way of utilizing Laravel’s services without
needing to type-hint and resolve contracts out of the service container. In most cases, each facade
has an equivalent contract.

Unlike facades, which do not require you to require them in your class’ constructor, contracts allow
you to define explicit dependencies for your classes. Some developers prefer to explicitly define
their dependencies in this way and therefore prefer to use contracts, while other developers enjoy
the convenience of facades.

{tip} Most applications will be fine regardless of whether you prefer facades or contracts.
However, if you are building a package, you should strongly consider using contracts
since they will be easier to test in a package context.

¹³³http://swiftmailer.org/
¹³⁴https://github.com/illuminate/contracts

http://swiftmailer.org/
https://github.com/illuminate/contracts
http://swiftmailer.org/
https://github.com/illuminate/contracts

Contracts 139

When To Use Contracts

As discussed elsewhere, much of the decision to use contracts or facades will come down to personal
taste and the tastes of your development team. Both contracts and facades can be used to create
robust, well-tested Laravel applications. As long as you are keeping your class’ responsibilities
focused, you will notice very few practical differences between using contracts and facades.

However, you may still have several questions regarding contracts. For example, why use interfaces
at all? Isn’t using interfaces more complicated? Let’s distill the reasons for using interfaces to the
following headings: loose coupling and simplicity.

Loose Coupling

First, let’s review some code that is tightly coupled to a cache implementation. Consider the
following:

1 <?php

2

3 namespace App\Orders;

4

5 class Repository

6 {

7 /**

8 * The cache instance.

9 */

10 protected $cache;

11

12 /**

13 * Create a new repository instance.

14 *

15 * @param \SomePackage\Cache\Memcached $cache

16 * @return void

17 */

18 public function __construct(\SomePackage\Cache\Memcached $cache)

19 {

20 $this->cache = $cache;

21 }

22

23 /**

24 * Retrieve an Order by ID.

25 *

26 * @param int $id

27 * @return Order

Contracts 140

28 */

29 public function find($id)

30 {

31 if ($this->cache->has($id)) {

32 //

33 }

34 }

35 }

In this class, the code is tightly coupled to a given cache implementation. It is tightly coupled because
we are depending on a concrete Cache class from a package vendor. If the API of that package
changes our code must change as well.

Likewise, if we want to replace our underlying cache technology (Memcached) with another
technology (Redis), we again will have to modify our repository. Our repository should not have so
much knowledge regarding who is providing them data or how they are providing it.

Instead of this approach, we can improve our code by depending on a simple, vendor agnostic
interface:

1 <?php

2

3 namespace App\Orders;

4

5 use Illuminate\Contracts\Cache\Repository as Cache;

6

7 class Repository

8 {

9 /**

10 * The cache instance.

11 */

12 protected $cache;

13

14 /**

15 * Create a new repository instance.

16 *

17 * @param Cache $cache

18 * @return void

19 */

20 public function __construct(Cache $cache)

21 {

22 $this->cache = $cache;

Contracts 141

23 }

24 }

Now the code is not coupled to any specific vendor, or even Laravel. Since the contracts package
contains no implementation and no dependencies, you may easily write an alternative implementa-
tion of any given contract, allowing you to replace your cache implementation without modifying
any of your cache consuming code.

Simplicity

When all of Laravel’s services are neatly definedwithin simple interfaces, it is very easy to determine
the functionality offered by a given service. The contracts serve as succinct documentation to the
framework’s features.

In addition, when you depend on simple interfaces, your code is easier to understand and maintain.
Rather than tracking down which methods are available to you within a large, complicated class,
you can refer to a simple, clean interface.

How To Use Contracts

So, how do you get an implementation of a contract? It’s actually quite simple.

Many types of classes in Laravel are resolved through the service container, including controllers,
event listeners, middleware, queued jobs, and even route Closures. So, to get an implementation of
a contract, you can just “type-hint” the interface in the constructor of the class being resolved.

For example, take a look at this event listener:

1 <?php

2

3 namespace App\Listeners;

4

5 use App\User;

6 use App\Events\OrderWasPlaced;

7 use Illuminate\Contracts\Redis\Database;

8

9 class CacheOrderInformation

10 {

11 /**

12 * The Redis database implementation.

13 */

14 protected $redis;

Contracts 142

15

16 /**

17 * Create a new event handler instance.

18 *

19 * @param Database $redis

20 * @return void

21 */

22 public function __construct(Database $redis)

23 {

24 $this->redis = $redis;

25 }

26

27 /**

28 * Handle the event.

29 *

30 * @param OrderWasPlaced $event

31 * @return void

32 */

33 public function handle(OrderWasPlaced $event)

34 {

35 //

36 }

37 }

When the event listener is resolved, the service container will read the type-hints on the constructor
of the class, and inject the appropriate value. To learn more about registering things in the service
container, check out its documentation.

Contract Reference

This table provides a quick reference to all of the Laravel contracts and their equivalent facades:

Contract | References Facade ————- | ————- IlluminateContractsAuthFactory¹³⁵ | Auth Illumi-
nateContractsAuthPasswordBroker¹³⁶ | Password IlluminateContractsBusDispatcher¹³⁷ | Bus Illumi-

¹³⁵https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\
char”007D\relax/Auth/Factory.php
¹³⁶https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Auth/PasswordBroker.php
¹³⁷https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Bus/Dispatcher.php

https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Auth/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Broadcasting/Broadcaster.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Auth/PasswordBroker.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Bus/Dispatcher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Bus/Dispatcher.php

Contracts 143

nateContractsBroadcastingBroadcaster¹³⁸ | IlluminateContractsCacheRepository¹³⁹ | Cache Illu-
minateContractsCacheFactory¹⁴⁰ | Cache::driver() IlluminateContractsConfigRepository¹⁴¹ | Config
IlluminateContractsContainerContainer¹⁴² | App IlluminateContractsCookieFactory¹⁴³ | Cookie Il-
luminateContractsCookieQueueingFactory¹⁴⁴ | Cookie::queue() IlluminateContractsEncryptionEn-
crypter¹⁴⁵ | Crypt IlluminateContractsEventsDispatcher¹⁴⁶ | Event IlluminateContractsFilesystem-
Cloud¹⁴⁷ | IlluminateContractsFilesystemFactory¹⁴⁸ | File IlluminateContractsFilesystemFilesys-
tem¹⁴⁹ | File IlluminateContractsFoundationApplication¹⁵⁰ | App IlluminateContractsHashingHasher¹⁵¹
| Hash IlluminateContractsLoggingLog¹⁵² | Log IlluminateContractsMailMailQueue¹⁵³ | Mail::queue()
IlluminateContractsMailMailer¹⁵⁴ | Mail IlluminateContractsQueueFactory¹⁵⁵ | Queue::driver() Illu-
minateContractsQueueQueue¹⁵⁶ | Queue IlluminateContractsRedisDatabase¹⁵⁷ | Redis Illuminate-

¹³⁸https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\
char”007D\relax/Broadcasting/Broadcaster.php
¹³⁹https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Cache/Repository.php
¹⁴⁰https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Cache/Factory.php
¹⁴¹https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Config/Repository.php
¹⁴²https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Container/Container.php
¹⁴³https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Cookie/Factory.php
¹⁴⁴https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Cookie/QueueingFactory.php
¹⁴⁵https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Encryption/Encrypter.php
¹⁴⁶https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Events/Dispatcher.php
¹⁴⁷https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Filesystem/Cloud.php
¹⁴⁸https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Filesystem/Factory.php
¹⁴⁹https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Filesystem/Filesystem.php
¹⁵⁰https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Foundation/Application.php
¹⁵¹https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Hashing/Hasher.php
¹⁵²https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Logging/Log.php
¹⁵³https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Mail/MailQueue.php
¹⁵⁴https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Mail/Mailer.php
¹⁵⁵https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Queue/Factory.php
¹⁵⁶https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Queue/Queue.php
¹⁵⁷https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Redis/Database.php

https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Repository.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Config/Repository.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Container/Container.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Foundation/Application.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Logging/Log.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Queue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Queue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Redis/Database.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Repository.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Repository.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cache/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Config/Repository.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Config/Repository.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Container/Container.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Container/Container.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Cookie/QueueingFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Encryption/Encrypter.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Events/Dispatcher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Cloud.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Filesystem/Filesystem.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Foundation/Application.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Foundation/Application.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Hashing/Hasher.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Logging/Log.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Logging/Log.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Mail/MailQueue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Mail/Mailer.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Queue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Queue/Queue.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Redis/Database.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Redis/Database.php

Contracts 144

ContractsRoutingRegistrar¹⁵⁸ | Route IlluminateContractsRoutingResponseFactory¹⁵⁹ | Response Il-
luminateContractsRoutingUrlGenerator¹⁶⁰ | URL IlluminateContractsSupportArrayable¹⁶¹ | Illu-
minateContractsSupportJsonable¹⁶² | IlluminateContractsSupportRenderable¹⁶³ | IlluminateCon-
tractsValidationFactory¹⁶⁴ | Validator::make() IlluminateContractsValidationValidator¹⁶⁵ | Illumi-
nateContractsViewFactory¹⁶⁶ | View::make() IlluminateContractsViewView¹⁶⁷ |

¹⁵⁸https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\
char”007D\relax/Routing/Registrar.php
¹⁵⁹https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Routing/ResponseFactory.php
¹⁶⁰https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Routing/UrlGenerator.php
¹⁶¹https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Support/Arrayable.php
¹⁶²https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Support/Jsonable.php
¹⁶³https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Support/Renderable.php
¹⁶⁴https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Validation/Factory.php
¹⁶⁵https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/Validation/Validator.php
¹⁶⁶https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/View/Factory.php
¹⁶⁷https://github.com/illuminate/contracts/blob/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\

char”007D\relax/View/View.php

https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Renderable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Validator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/View.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/Registrar.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/ResponseFactory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Routing/UrlGenerator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Arrayable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Jsonable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Renderable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Support/Renderable.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Validator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/Validation/Validator.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/Factory.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/View.php
https://github.com/illuminate/contracts/blob/%7B%7Bversion%7D%7D/View/View.php

Routing
• Basic Routing
• Route Parameters A> - Required Parameters A> - Optional Parameters A> - Regular Expression
Constraints

• Named Routes
• Route Groups A> - Middleware A> - Namespaces A> - Sub-Domain Routing A> - Route
Prefixes

• Route Model Binding A> - Implicit Binding A> - Explicit Binding
• Form Method Spoofing
• Accessing The Current Route

Basic Routing

The most basic Laravel routes simply accept a URI and a Closure, providing a very simple and
expressive method of defining routes:

1 Route::get('foo', function () {

2 return 'Hello World';

3 });

The Default Route Files

All Laravel routes are defined in your route files, which are located in the routes directory. These
files are automatically loaded by the framework. The routes/web.php file defines routes that are for
your web interface. These routes are assigned the web middleware group, which provides features
like session state and CSRF protection. The routes in routes/api.php are stateless and are assigned
the api middleware group.

For most applications, you will begin by defining routes in your routes/web.php file.

Available Router Methods

The router allows you to register routes that respond to any HTTP verb:

Routing 146

1 Route::get($uri, $callback);

2 Route::post($uri, $callback);

3 Route::put($uri, $callback);

4 Route::patch($uri, $callback);

5 Route::delete($uri, $callback);

6 Route::options($uri, $callback);

Sometimes you may need to register a route that responds to multiple HTTP verbs. You may do so
using the match method. Or, you may even register a route that responds to all HTTP verbs using
the any method:

1 Route::match(['get', 'post'], '/', function () {

2 //

3 });

4

5 Route::any('foo', function () {

6 //

7 });

CSRF Protection

Any HTML forms pointing to POST, PUT, or DELETE routes that are defined in the web routes file
should include a CSRF token field. Otherwise, the request will be rejected. You can read more about
CSRF protection in the CSRF documentation:

1 <form method="POST" action="/profile">

2 {{ csrf_field() }}

3 ...

4 </form>

Route Parameters

Required Parameters

Of course, sometimes you will need to capture segments of the URI within your route. For example,
you may need to capture a user’s ID from the URL. You may do so by defining route parameters:

Routing 147

1 Route::get('user/{id}', function ($id) {

2 return 'User '.$id;

3 });

You may define as many route parameters as required by your route:

1 Route::get('posts/{post}/comments/{comment}', function ($postId, $commentId) {

2 //

3 });

Route parameters are always encased within {} braces and should consist of alphabetic characters.
Route parameters may not contain a - character. Use an underscore (_) instead.

Optional Parameters

Occasionally you may need to specify a route parameter, but make the presence of that route
parameter optional. You may do so by placing a ? mark after the parameter name. Make sure to
give the route’s corresponding variable a default value:

1 Route::get('user/{name?}', function ($name = null) {

2 return $name;

3 });

4

5 Route::get('user/{name?}', function ($name = 'John') {

6 return $name;

7 });

Regular Expression Constraints

You may constrain the format of your route parameters using the wheremethod on a route instance.
The where method accepts the name of the parameter and a regular expression defining how the
parameter should be constrained:

Routing 148

1 Route::get('user/{name}', function ($name) {

2 //

3 })->where('name', '[A-Za-z]+');

4

5 Route::get('user/{id}', function ($id) {

6 //

7 })->where('id', '[0-9]+');

8

9 Route::get('user/{id}/{name}', function ($id, $name) {

10 //

11 })->where(['id' => '[0-9]+', 'name' => '[a-z]+']);

Global Constraints

If you would like a route parameter to always be constrained by a given regular expression,
you may use the pattern method. You should define these patterns in the boot method of your
RouteServiceProvider:

1 /**

2 * Define your route model bindings, pattern filters, etc.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 Route::pattern('id', '[0-9]+');

9

10 parent::boot();

11 }

Once the pattern has been defined, it is automatically applied to all routes using that parameter
name:

1 Route::get('user/{id}', function ($id) {

2 // Only executed if {id} is numeric...

3 });

Routing 149

Named Routes

Named routes allow the convenient generation of URLs or redirects for specific routes. You may
specify a name for a route by chaining the name method onto the route definition:

1 Route::get('user/profile', function () {

2 //

3 })->name('profile');

You may also specify route names for controller actions:

1 Route::get('user/profile', 'UserController@showProfile')->name('profile');

Generating URLs To Named Routes

Once you have assigned a name to a given route, you may use the route’s name when generating
URLs or redirects via the global route function:

1 // Generating URLs...

2 $url = route('profile');

3

4 // Generating Redirects...

5 return redirect()->route('profile');

If the named route defines parameters, you may pass the parameters as the second argument to the
route function. The given parameters will automatically be inserted into the URL in their correct
positions:

1 Route::get('user/{id}/profile', function ($id) {

2 //

3 })->name('profile');

4

5 $url = route('profile', ['id' => 1]);

Routing 150

Route Groups

Route groups allow you to share route attributes, such as middleware or namespaces, across a
large number of routes without needing to define those attributes on each individual route. Shared
attributes are specified in an array format as the first parameter to the Route::group method.

Middleware

To assign middleware to all routes within a group, you may use the middleware key in the group
attribute array. Middleware are executed in the order they are listed in the array:

1 Route::group(['middleware' => 'auth'], function () {

2 Route::get('/', function () {

3 // Uses Auth Middleware

4 });

5

6 Route::get('user/profile', function () {

7 // Uses Auth Middleware

8 });

9 });

Namespaces

Another common use-case for route groups is assigning the same PHP namespace to a group of
controllers using the namespace parameter in the group array:

1 Route::group(['namespace' => 'Admin'], function () {

2 // Controllers Within The "App\Http\Controllers\Admin" Namespace

3 });

Remember, by default, the RouteServiceProvider includes your route files within a namespace
group, allowing you to register controller routes without specifying the full App\Http\Controllers
namespace prefix. So, you only need to specify the portion of the namespace that comes after the
base App\Http\Controllers namespace.

Sub-Domain Routing

Route groups may also be used to handle sub-domain routing. Sub-domains may be assigned route
parameters just like route URIs, allowing you to capture a portion of the sub-domain for usage

Routing 151

in your route or controller. The sub-domain may be specified using the domain key on the group
attribute array:

1 Route::group(['domain' => '{account}.myapp.com'], function () {

2 Route::get('user/{id}', function ($account, $id) {

3 //

4 });

5 });

Route Prefixes

The prefix group attribute may be used to prefix each route in the group with a given URI. For
example, you may want to prefix all route URIs within the group with admin:

1 Route::group(['prefix' => 'admin'], function () {

2 Route::get('users', function () {

3 // Matches The "/admin/users" URL

4 });

5 });

Route Model Binding

When injecting a model ID to a route or controller action, you will often query to retrieve the model
that corresponds to that ID. Laravel route model binding provides a convenient way to automatically
inject the model instances directly into your routes. For example, instead of injecting a user’s ID,
you can inject the entire User model instance that matches the given ID.

Implicit Binding

Laravel automatically resolves Eloquent models defined in routes or controller actions whose
variable names match a route segment name. For example:

1 Route::get('api/users/{user}', function (App\User $user) {

2 return $user->email;

Routing 152

3 });

In this example, since the Eloquent $user variable defined on the route matches the {user} segment
in the route’s URI, Laravel will automatically inject the model instance that has an ID matching the
corresponding value from the request URI. If a matching model instance is not found in the database,
a 404 HTTP response will automatically be generated.

Customizing The Key Name

If you would like model binding to use a database column other than id when retrieving a given
model class, you may override the getRouteKeyName method on the Eloquent model:

1 /**

2 * Get the route key for the model.

3 *

4 * @return string

5 */

6 public function getRouteKeyName()

7 {

8 return 'slug';

9 }

Explicit Binding

To register an explicit binding, use the router’s modelmethod to specify the class for a given parame-
ter. You should define your explicit model bindings in the bootmethod of the RouteServiceProvider
class:

1 public function boot()

2 {

3 parent::boot();

4

5 Route::model('user', App\User::class);

6 }

Next, define a route that contains a {user} parameter:

Routing 153

1 Route::get('profile/{user}', function (App\User $user) {

2 //

3 });

Since we have bound all {user} parameters to the App\Usermodel, a User instance will be injected
into the route. So, for example, a request to profile/1will inject the User instance from the database
which has an ID of 1.

If a matchingmodel instance is not found in the database, a 404 HTTP response will be automatically
generated.

Customizing The Resolution Logic

If you wish to use your own resolution logic, you may use the Route::bind method. The Closure
you pass to the bindmethod will receive the value of the URI segment and should return the instance
of the class that should be injected into the route:

1 public function boot()

2 {

3 parent::boot();

4

5 Route::bind('user', function ($value) {

6 return App\User::where('name', $value)->first();

7 });

8 }

Form Method Spoofing

HTML forms do not support PUT, PATCH or DELETE actions. So, when defining PUT, PATCH or DELETE
routes that are called from an HTML form, you will need to add a hidden _method field to the form.
The value sent with the _method field will be used as the HTTP request method:

1 <form action="/foo/bar" method="POST">

2 <input type="hidden" name="_method" value="PUT">

3 <input type="hidden" name="_token" value="{{ csrf_token() }}">

4 </form>

Routing 154

You may use the method_field helper to generate the _method input:

1 {{ method_field('PUT') }}

Accessing The Current Route

You may use the current, currentRouteName, and currentRouteAction methods on the Route

facade to access information about the route handling the incoming request:

1 $route = Route::current();

2

3 $name = Route::currentRouteName();

4

5 $action = Route::currentRouteAction();

Refer to the API documentation for both the underlying class of the Route facade¹⁶⁸ and Route
instance¹⁶⁹ to review all accessible methods.

¹⁶⁸https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/
Routing/Router.html
¹⁶⁹https://laravel.com/api/\protect\char”007B\relax\protect\char”007B\relaxversion\protect\char”007D\relax\protect\char”007D\relax/Illuminate/

Routing/Route.html

https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Router.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Route.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Route.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Router.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Router.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Route.html
https://laravel.com/api/%7B%7Bversion%7D%7D/Illuminate/Routing/Route.html

Middleware
• Introduction
• Defining Middleware
• Registering Middleware A> - Global Middleware A> - Assigning Middleware To Routes A> -
Middleware Groups

• Middleware Parameters
• Terminable Middleware

Introduction

Middleware provide a convenient mechanism for filtering HTTP requests entering your application.
For example, Laravel includes a middleware that verifies the user of your application is authenti-
cated. If the user is not authenticated, the middleware will redirect the user to the login screen.
However, if the user is authenticated, the middleware will allow the request to proceed further into
the application.

Of course, additional middleware can be written to perform a variety of tasks besides authentication.
ACORSmiddlewaremight be responsible for adding the proper headers to all responses leaving your
application. A logging middleware might log all incoming requests to your application.

There are several middleware included in the Laravel framework, including middleware for au-
thentication and CSRF protection. All of these middleware are located in the app/Http/Middleware
directory.

Defining Middleware

To create a new middleware, use the make:middleware Artisan command:

1 php artisan make:middleware CheckAge

This command will place a new CheckAge class within your app/Http/Middleware directory. In this
middleware, we will only allow access to the route if the supplied age is greater than 200. Otherwise,
we will redirect the users back to the home URI.

Middleware 156

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class CheckAge

8 {

9 /**

10 * Run the request filter.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

14 * @return mixed

15 */

16 public function handle($request, Closure $next)

17 {

18 if ($request->age <= 200) {

19 return redirect('home');

20 }

21

22 return $next($request);

23 }

24

25 }

As you can see, if the given age is less than or equal to 200, the middleware will return an HTTP
redirect to the client; otherwise, the request will be passed further into the application. To pass
the request deeper into the application (allowing the middleware to “pass”), simply call the $next
callback with the $request.

It’s best to envision middleware as a series of “layers” HTTP requests must pass through before they
hit your application. Each layer can examine the request and even reject it entirely.

Before & After Middleware

Whether a middleware runs before or after a request depends on the middleware itself. For example,
the followingmiddleware would perform some task before the request is handled by the application:

1 <?php

2

Middleware 157

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class BeforeMiddleware

8 {

9 public function handle($request, Closure $next)

10 {

11 // Perform action

12

13 return $next($request);

14 }

15 }

However, this middleware would perform its task after the request is handled by the application:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class AfterMiddleware

8 {

9 public function handle($request, Closure $next)

10 {

11 $response = $next($request);

12

13 // Perform action

14

15 return $response;

16 }

17 }

Middleware 158

Registering Middleware

Global Middleware

If you want a middleware to run during every HTTP request to your application, simply list the
middleware class in the $middleware property of your app/Http/Kernel.php class.

Assigning Middleware To Routes

If you would like to assign middleware to specific routes, you should first assign the middleware
a key in your app/Http/Kernel.php file. By default, the $routeMiddleware property of this class
contains entries for the middleware included with Laravel. To add your own, simply append it to
this list and assign it a key of your choosing. For example:

1 // Within App\Http\Kernel Class...

2

3 protected $routeMiddleware = [

4 'auth' => \Illuminate\Auth\Middleware\Authenticate::class,

5 'auth.basic' => \Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,

6 'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,

7 'can' => \Illuminate\Auth\Middleware\Authorize::class,

8 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,

9 'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,

10];

Once the middleware has been defined in the HTTP kernel, you may use the middlewaremethod to
assign middleware to a route:

1 Route::get('admin/profile', function () {

2 //

3 })->middleware('auth');

You may also assign multiple middleware to the route:

1 Route::get('/', function () {

2 //

Middleware 159

3 })->middleware('first', 'second');

When assigning middleware, you may also pass the fully qualified class name:

1 use App\Http\Middleware\CheckAge;

2

3 Route::get('admin/profile', function () {

4 //

5 })->middleware(CheckAge::class);

Middleware Groups

Sometimes you may want to group several middleware under a single key to make them easier to
assign to routes. You may do this using the $middlewareGroups property of your HTTP kernel.

Out of the box, Laravel comes with web and api middleware groups that contains common
middleware you may want to apply to your web UI and API routes:

1 /**

2 * The application's route middleware groups.

3 *

4 * @var array

5 */

6 protected $middlewareGroups = [

7 'web' => [

8 \App\Http\Middleware\EncryptCookies::class,

9 \Illuminate\Cookie\Middleware\AddQueuedCookiesToResponse::class,

10 \Illuminate\Session\Middleware\StartSession::class,

11 \Illuminate\View\Middleware\ShareErrorsFromSession::class,

12 \App\Http\Middleware\VerifyCsrfToken::class,

13 \Illuminate\Routing\Middleware\SubstituteBindings::class,

14],

15

16 'api' => [

17 'throttle:60,1',

18 'auth:api',

19],

Middleware 160

20];

Middleware groups may be assigned to routes and controller actions using the same syntax as
individual middleware. Again, middleware groups simply make it more convenient to assign many
middleware to a route at once:

1 Route::get('/', function () {

2 //

3 })->middleware('web');

4

5 Route::group(['middleware' => ['web']], function () {

6 //

7 });

{tip} Out of the box, the web middleware group is automatically applied to your
routes/web.php file by the RouteServiceProvider.

Middleware Parameters

Middleware can also receive additional parameters. For example, if your application needs to verify
that the authenticated user has a given “role” before performing a given action, you could create a
CheckRole middleware that receives a role name as an additional argument.

Additional middleware parameters will be passed to the middleware after the $next argument:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Closure;

6

7 class CheckRole

8 {

9 /**

10 * Handle the incoming request.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

Middleware 161

14 * @param string $role

15 * @return mixed

16 */

17 public function handle($request, Closure $next, $role)

18 {

19 if (! $request->user()->hasRole($role)) {

20 // Redirect...

21 }

22

23 return $next($request);

24 }

25

26 }

Middleware parameters may be specified when defining the route by separating the middleware
name and parameters with a :. Multiple parameters should be delimited by commas:

1 Route::put('post/{id}', function ($id) {

2 //

3 })->middleware('role:editor');

Terminable Middleware

Sometimes a middleware may need to do some work after the HTTP response has been sent to the
browser. For example, the “session” middleware included with Laravel writes the session data to
storage after the response has been sent to the browser. If you define a terminate method on your
middleware, it will automatically be called after the response is sent to the browser.

1 <?php

2

3 namespace Illuminate\Session\Middleware;

4

5 use Closure;

6

7 class StartSession

8 {

9 public function handle($request, Closure $next)

Middleware 162

10 {

11 return $next($request);

12 }

13

14 public function terminate($request, $response)

15 {

16 // Store the session data...

17 }

18 }

The terminate method should receive both the request and the response. Once you have defined a
terminable middleware, you should add it to the list of global middleware in your HTTP kernel.

When calling the terminate method on your middleware, Laravel will resolve a fresh instance of
the middleware from the service container. If you would like to use the same middleware instance
when the handle and terminate methods are called, register the middleware with the container
using the container’s singleton method.

CSRF Protection
• Introduction
• Excluding URIs
• X-CSRF-Token
• X-XSRF-Token

Introduction

Laravel makes it easy to protect your application from cross-site request forgery¹⁷⁰ (CSRF) attacks.
Cross-site request forgeries are a type of malicious exploit whereby unauthorized commands are
performed on behalf of an authenticated user.

Laravel automatically generates a CSRF “token” for each active user session managed by the
application. This token is used to verify that the authenticated user is the one actually making the
requests to the application.

Anytime you define a HTML form in your application, you should include a hidden CSRF token
field in the form so that the CSRF protection middleware can validate the request. You may use the
csrf_field helper to generate the token field:

1 <form method="POST" action="/profile">

2 {{ csrf_field() }}

3 ...

4 </form>

The VerifyCsrfToken middleware, which is included in the web middleware group, will automati-
cally verify that the token in the request input matches the token stored in the session.

Excluding URIs From CSRF Protection

Sometimes you may wish to exclude a set of URIs from CSRF protection. For example, if you are
using Stripe¹⁷¹ to process payments and are utilizing their webhook system, you will need to exclude

¹⁷⁰https://en.wikipedia.org/wiki/Cross-site_request_forgery
¹⁷¹https://stripe.com

https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://stripe.com/
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://stripe.com/

CSRF Protection 164

your Stripe webhook handler route from CSRF protection since Stripe will not know what CSRF
token to send to your routes.

Typically, you should place these kinds of routes outside of the web middleware group that
the RouteServiceProvider applies to all routes in the routes/web.php file. However, you may
also exclude the routes by adding their URIs to the $except property of the VerifyCsrfToken

middleware:

1 <?php

2

3 namespace App\Http\Middleware;

4

5 use Illuminate\Foundation\Http\Middleware\VerifyCsrfToken as BaseVerifier;

6

7 class VerifyCsrfToken extends BaseVerifier

8 {

9 /**

10 * The URIs that should be excluded from CSRF verification.

11 *

12 * @var array

13 */

14 protected $except = [

15 'stripe/*',

16];

17 }

X-CSRF-TOKEN

In addition to checking for the CSRF token as a POST parameter, the VerifyCsrfToken middleware
will also check for the X-CSRF-TOKEN request header. You could, for example, store the token in a
HTML meta tag:

1 <meta name="csrf-token" content="{{ csrf_token() }}">

Then, once you have created the meta tag, you can instruct a library like jQuery to automatically add
the token to all request headers. This provides simple, convenient CSRF protection for your AJAX
based applications:

CSRF Protection 165

1 $.ajaxSetup({

2 headers: {

3 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')

4 }

5 });

X-XSRF-TOKEN

Laravel stores the current CSRF token in a XSRF-TOKEN cookie that is included with each response
generated by the framework. You can use the cookie value to set the X-XSRF-TOKEN request header.

This cookie is primarily sent as a convenience since some JavaScript frameworks, like Angular,
automatically place its value in the X-XSRF-TOKEN header.

Controllers
• Introduction
• Basic Controllers A> - Defining Controllers A> - Controllers & Namespaces A> - Single Action
Controllers

• Controller Middleware
• Resource Controllers A> - Partial Resource Routes A> - Naming Resource Routes A> - Naming
Resource Route Parameters A> - Supplementing Resource Controllers

• Dependency Injection & Controllers
• Route Caching

Introduction

Instead of defining all of your request handling logic as Closures in route files, you may wish to
organize this behavior using Controller classes. Controllers can group related request handling logic
into a single class. Controllers are stored in the app/Http/Controllers directory.

Basic Controllers

Defining Controllers

Below is an example of a basic controller class. Note that the controller extends the base controller
class included with Laravel. The base class provides a few convenience methods such as the
middleware method, which may be used to attach middleware to controller actions:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

Controllers 167

13 * @param int $id

14 * @return Response

15 */

16 public function show($id)

17 {

18 return view('user.profile', ['user' => User::findOrFail($id)]);

19 }

20 }

You can define a route to this controller action like so:

1 Route::get('user/{id}', 'UserController@show');

Now, when a request matches the specified route URI, the showmethod on the UserController class
will be executed. Of course, the route parameters will also be passed to the method.

{tip} Controllers are not required to extend a base class. However, you will not
have access to convenience features such as the middleware, validate, and dispatch

methods.

Controllers & Namespaces

It is very important to note that we did not need to specify the full controller namespace when
defining the controller route. Since the RouteServiceProvider loads your route files within a route
group that contains the namespace, we only specified the portion of the class name that comes after
the App\Http\Controllers portion of the namespace.

If you choose to nest your controllers deeper into the App\Http\Controllers directory, simply
use the specific class name relative to the App\Http\Controllers root namespace. So, if your full
controller class is App\Http\Controllers\Photos\AdminController, you should register routes to
the controller like so:

1 Route::get('foo', 'Photos\AdminController@method');

Single Action Controllers

If you would like to define a controller that only handles a single action, you may place a single
__invoke method on the controller:

Controllers 168

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use App\Http\Controllers\Controller;

7

8 class ShowProfile extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param int $id

14 * @return Response

15 */

16 public function __invoke($id)

17 {

18 return view('user.profile', ['user' => User::findOrFail($id)]);

19 }

20 }

When registering routes for single action controllers, you do not need to specify a method:

1 Route::get('user/{id}', 'ShowProfile');

Controller Middleware

Middleware may be assigned to the controller’s routes in your route files:

1 Route::get('profile', 'UserController@show')->middleware('auth');

However, it is more convenient to specify middleware within your controller’s constructor. Using
the middlewaremethod from your controller’s constructor, you may easily assign middleware to the
controller’s action. You may even restrict the middleware to only certain methods on the controller
class:

Controllers 169

1 class UserController extends Controller

2 {

3 /**

4 * Instantiate a new controller instance.

5 *

6 * @return void

7 */

8 public function __construct()

9 {

10 $this->middleware('auth');

11

12 $this->middleware('log')->only('index');

13

14 $this->middleware('subscribed')->except('store');

15 }

16 }

Controller’s also allow you to register middleware using a Closure. This provides a convenient way
to define a middleware for a single controller without defining an entire middleware class:

1 $this->middleware(function ($request, $next) {

2 // ...

3

4 return $next($request);

5 });

{tip} You may assign middleware to a subset of controller actions; however, it may
indicate your controller is growing too large. Instead, consider breaking your controller
into multiple, smaller controllers.

Resource Controllers

Laravel resource routing assigns the typical “CRUD” routes to a controller with a single line of code.
For example, you may wish to create a controller that handles all HTTP requests for “photos” stored
by your application. Using the make:controller Artisan command, we can quickly create such a
controller:

Controllers 170

1 php artisan make:controller PhotoController --resource

This command will generate a controller at app/Http/Controllers/PhotoController.php. The
controller will contain a method for each of the available resource operations.

Next, you may register a resourceful route to the controller:

1 Route::resource('photos', 'PhotoController');

This single route declaration creates multiple routes to handle a variety of actions on the resource.
The generated controller will already have methods stubbed for each of these actions, including
notes informing you of the HTTP verbs and URIs they handle.

Actions Handled By Resource Controller

| Verb | URI | Action | Route Name | ———-|———————–|————–|——————— | GET | /photos
| index | photos.index | | GET | /photos/create | create | photos.create | | POST | /photos | store |
photos.store | | GET | /photos/{photo} | show | photos.show | | GET | /photos/{photo}/edit | edit |
photos.edit | | PUT/PATCH | /photos/{photo} | update | photos.update | | DELETE | /photos/{photo}
| destroy | photos.destroy |

Spoofing Form Methods

Since HTML forms can’t make PUT, PATCH, or DELETE requests, you will need to add a hidden _method
field to spoof these HTTP verbs. The method_field helper can create this field for you:

1 {{ method_field('PUT') }}

Partial Resource Routes

When declaring a resource route, you may specify a subset of actions the controller should handle
instead of the full set of default actions:

Controllers 171

1 Route::resource('photo', 'PhotoController', ['only' => [

2 'index', 'show'

3]]);

4

5 Route::resource('photo', 'PhotoController', ['except' => [

6 'create', 'store', 'update', 'destroy'

7]]);

Naming Resource Routes

By default, all resource controller actions have a route name; however, you can override these names
by passing a names array with your options:

1 Route::resource('photo', 'PhotoController', ['names' => [

2 'create' => 'photo.build'

3]]);

Naming Resource Route Parameters

By default, Route::resource will create the route parameters for your resource routes based on the
“singularized” version of the resource name. You can easily override this on a per resource basis by
passing parameters in the options array. The parameters array should be an associative array of
resource names and parameter names:

1 Route::resource('user', 'AdminUserController', ['parameters' => [

2 'user' => 'admin_user'

3]]);

The example above generates the following URIs for the resource’s show route:

1 /user/{admin_user}

Controllers 172

Supplementing Resource Controllers

If you need to add additional routes to a resource controller beyond the default set of resource routes,
you should define those routes before your call to Route::resource; otherwise, the routes defined
by the resource method may unintentionally take precedence over your supplemental routes:

1 Route::get('photos/popular', 'PhotoController@method');

2

3 Route::resource('photos', 'PhotoController');

{tip} Remember to keep your controllers focused. If you find yourself routinely needing
methods outside of the typical set of resource actions, consider splitting your controller
into two, smaller controllers.

Dependency Injection & Controllers

Constructor Injection

The Laravel service container is used to resolve all Laravel controllers. As a result, you are able to
type-hint any dependencies your controller may need in its constructor. The declared dependencies
will automatically be resolved and injected into the controller instance:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Repositories\UserRepository;

6

7 class UserController extends Controller

8 {

9 /**

10 * The user repository instance.

11 */

12 protected $users;

13

14 /**

15 * Create a new controller instance.

16 *

17 * @param UserRepository $users

18 * @return void

Controllers 173

19 */

20 public function __construct(UserRepository $users)

21 {

22 $this->users = $users;

23 }

24 }

Of course, you may also type-hint any Laravel contract. If the container can resolve it, you can
type-hint it. Depending on your application, injecting your dependencies into your controller may
provide better testability.

Method Injection

In addition to constructor injection, you may also type-hint dependencies on your controller’s
methods. A common use-case for method injection is injecting the Illuminate\Http\Request

instance into your controller methods:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Store a new user.

11 *

12 * @param Request $request

13 * @return Response

14 */

15 public function store(Request $request)

16 {

17 $name = $request->name;

18

19 //

20 }

21 }

If your controller method is also expecting input from a route parameter, simply list your route
arguments after your other dependencies. For example, if your route is defined like so:

Controllers 174

1 Route::put('user/{id}', 'UserController@update');

You may still type-hint the Illuminate\Http\Request and access your id parameter by defining
your controller method as follows:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Update the given user.

11 *

12 * @param Request $request

13 * @param string $id

14 * @return Response

15 */

16 public function update(Request $request, $id)

17 {

18 //

19 }

20 }

Route Caching

{note} Closure based routes cannot be cached. To use route caching, you must convert
any Closure routes to controller classes.

If your application is exclusively using controller based routes, you should take advantage of
Laravel’s route cache. Using the route cache will drastically decrease the amount of time it takes
to register all of your application’s routes. In some cases, your route registration may even be up to
100x faster. To generate a route cache, just execute the route:cache Artisan command:

Controllers 175

1 php artisan route:cache

After running this command, your cached routes file will be loaded on every request. Remember, if
you add any new routes you will need to generate a fresh route cache. Because of this, you should
only run the route:cache command during your project’s deployment.

You may use the route:clear command to clear the route cache:

1 php artisan route:clear

Request Lifecycle
• Introduction
• Lifecycle Overview
• Focus On Service Providers

Introduction

When using any tool in the “real world”, you feel more confident if you understand how that tool
works. Application development is no different. When you understand how your development tools
function, you feel more comfortable and confident using them.

The goal of this document is to give you a good, high-level overview of how the Laravel framework
“works”. By getting to know the overall framework better, everything feels less “magical” and you
will be more confident building your applications.

If you don’t understand all of the terms right away, don’t lose heart! Just try to get a basic grasp of
what is going on, and your knowledge will grow as you explore other sections of the documentation.

Lifecycle Overview

First Things

The entry point for all requests to a Laravel application is the public/index.php file. All requests are
directed to this file by your web server (Apache / Nginx) configuration. The index.php file doesn’t
contain much code. Rather, it is simply a starting point for loading the rest of the framework.

The index.php file loads the Composer generated autoloader definition, and then retrieves an
instance of the Laravel application from bootstrap/app.php script. The first action taken by Laravel
itself is to create an instance of the application / service container.

HTTP / Console Kernels

Next, the incoming request is sent to either the HTTP kernel or the console kernel, depending on
the type of request that is entering the application. These two kernels serve as the central location
that all requests flow through. For now, let’s just focus on the HTTP kernel, which is located in
app/Http/Kernel.php.

Request Lifecycle 177

The HTTP kernel extends the Illuminate\Foundation\Http\Kernel class, which defines an array
of bootstrappers that will be run before the request is executed. These bootstrappers configure
error handling, configure logging, detect the application environment, and perform other tasks that
need to be done before the request is actually handled.

The HTTP kernel also defines a list of HTTP middleware that all requests must pass through before
being handled by the application. These middleware handle reading and writing the HTTP session,
determine if the application is in maintenance mode, verifying the CSRF token, and more.

The method signature for the HTTP kernel’s handle method is quite simple: receive a Request

and return a Response. Think of the Kernel as being a big black box that represents your entire
application. Feed it HTTP requests and it will return HTTP responses.

Service Providers

One of the most important Kernel bootstrapping actions is loading the service providers for your
application. All of the service providers for the application are configured in the config/app.php

configuration file’s providers array. First, the registermethod will be called on all providers, then,
once all providers have been registered, the boot method will be called.

Service providers are responsible for bootstrapping all of the framework’s various components, such
as the database, queue, validation, and routing components. Since they bootstrap and configure
every feature offered by the framework, service providers are the most important aspect of the
entire Laravel bootstrap process.

Dispatch Request

Once the application has been bootstrapped and all service providers have been registered, the
Request will be handed off to the router for dispatching. The router will dispatch the request to
a route or controller, as well as run any route specific middleware.

Focus On Service Providers

Service providers are truly the key to bootstrapping a Laravel application. The application instance
is created, the service providers are registered, and the request is handed to the bootstrapped
application. It’s really that simple!

Having a firm grasp of how a Laravel application is built and bootstrapped via service providers is
very valuable. Of course, your application’s default service providers are stored in the app/Providers
directory.

By default, the AppServiceProvider is fairly empty. This provider is a great place to add your
application’s own bootstrapping and service container bindings. Of course, for large applications,
you may wish to create several service providers, each with a more granular type of bootstrapping.

HTTP Requests
• Accessing The Request A> - Request Path & Method A> - PSR-7 Requests
• Retrieving Input A> - Old Input A> - Cookies
• Files A> - Retrieving Uploaded Files A> - Storing Uploaded Files

Accessing The Request

To obtain an instance of the current HTTP request via dependency injection, you should type-hint
the Illuminate\Http\Request class on your controller method. The incoming request instance will
automatically be injected by the service container:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Store a new user.

11 *

12 * @param Request $request

13 * @return Response

14 */

15 public function store(Request $request)

16 {

17 $name = $request->input('name');

18

19 //

20 }

21 }

Dependency Injection & Route Parameters

If your controller method is also expecting input from a route parameter you should list your route
parameters after your other dependencies. For example, if your route is defined like so:

HTTP Requests 179

1 Route::put('user/{id}', 'UserController@update');

You may still type-hint the Illuminate\Http\Request and access your route parameter id by
defining your controller method as follows:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class UserController extends Controller

8 {

9 /**

10 * Update the specified user.

11 *

12 * @param Request $request

13 * @param string $id

14 * @return Response

15 */

16 public function update(Request $request, $id)

17 {

18 //

19 }

20 }

Accessing The Request Via Route Closures

You may also type-hint the Illuminate\Http\Request class on a route Closure. The service
container will automatically inject the incoming request into the Closure when it is executed:

1 use Illuminate\Http\Request;

2

3 Route::get('/', function (Request $request) {

4 //

5 });

HTTP Requests 180

Request Path & Method

The Illuminate\Http\Request instance provides a variety of methods for examining the HTTP
request for your application and extends the Symfony\Component\HttpFoundation\Request class.
We will discuss a few of the most important methods below.

Retrieving The Request Path

The path method returns the request’s path information. So, if the incoming request is targeted at
http://domain.com/foo/bar, the path method will return foo/bar:

1 $uri = $request->path();

The is method allows you to verify that the incoming request path matches a given pattern. You
may use the * character as a wildcard when utilizing this method:

1 if ($request->is('admin/*')) {

2 //

3 }

Retrieving The Request URL

To retrieve the full URL for the incoming request you may use the url or fullUrlmethods. The url
method will return the URL without the query string, while the fullUrlmethod includes the query
string:

1 // Without Query String...

2 $url = $request->url();

3

4 // With Query String...

5 $url = $request->fullUrl();

Retrieving The Request Method

The method method will return the HTTP verb for the request. You may use the isMethod method
to verify that the HTTP verb matches a given string:

HTTP Requests 181

1 $method = $request->method();

2

3 if ($request->isMethod('post')) {

4 //

5 }

PSR-7 Requests

The PSR-7 standard¹⁷² specifies interfaces for HTTP messages, including requests and responses. If
you would like to obtain an instance of a PSR-7 request instead of a Laravel request, you will first
need to install a few libraries. Laravel uses the Symfony HTTPMessage Bridge component to convert
typical Laravel requests and responses into PSR-7 compatible implementations:

1 composer require symfony/psr-http-message-bridge

2 composer require zendframework/zend-diactoros

Once you have installed these libraries, you may obtain a PSR-7 request by type-hinting the request
interface on your route Closure or controller method:

1 use Psr\Http\Message\ServerRequestInterface;

2

3 Route::get('/', function (ServerRequestInterface $request) {

4 //

5 });

{tip} If you return a PSR-7 response instance from a route or controller, it will
automatically be converted back to a Laravel response instance and be displayed by
the framework.

Retrieving Input

Retrieving All Input Data

You may also retrieve all of the input data as an array using the all method:

¹⁷²http://www.php-fig.org/psr/psr-7/

http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/

HTTP Requests 182

1 $input = $request->all();

Retrieving An Input Value

Using a few simplemethods, youmay access all of the user input fromyour Illuminate\Http\Request
instancewithout worrying about whichHTTP verbwas used for the request. Regardless of the HTTP
verb, the input method may be used to retrieve user input:

1 $name = $request->input('name');

You may pass a default value as the second argument to the input method. This value will be
returned if the requested input value is not present on the request:

1 $name = $request->input('name', 'Sally');

When working with forms that contain array inputs, use “dot” notation to access the arrays:

1 $name = $request->input('products.0.name');

2

3 $names = $request->input('products.*.name');

Retrieving Input Via Dynamic Properties

Youmay also access user input using dynamic properties on the Illuminate\Http\Request instance.
For example, if one of your application’s forms contains a name field, you may access the value of
the field like so:

1 $name = $request->name;

When using dynamic properties, Laravel will first look for the parameter’s value in the request
payload. If it is not present, Laravel will search for the field in the route parameters.

HTTP Requests 183

Retrieving JSON Input Values

When sending JSON requests to your application, you may access the JSON data via the input

method as long as the Content-Type header of the request is properly set to application/json. You
may even use “dot” syntax to dig into JSON arrays:

1 $name = $request->input('user.name');

Retrieving A Portion Of The Input Data

If you need to retrieve a subset of the input data, you may use the only and except methods. Both
of these methods accept a single array or a dynamic list of arguments:

1 $input = $request->only(['username', 'password']);

2

3 $input = $request->only('username', 'password');

4

5 $input = $request->except(['credit_card']);

6

7 $input = $request->except('credit_card');

Determining If An Input Value Is Present

You should use the has method to determine if a value is present on the request. The has method
returns true if the value is present and is not an empty string:

1 if ($request->has('name')) {

2 //

3 }

Old Input

Laravel allows you to keep input from one request during the next request. This feature is particularly
useful for re-populating forms after detecting validation errors. However, if you are using Laravel’s
included validation features, it is unlikely you will need to manually use these methods, as some of
Laravel’s built-in validation facilities will call them automatically.

HTTP Requests 184

Flashing Input To The Session

The flashmethod on the Illuminate\Http\Request class will flash the current input to the session
so that it is available during the user’s next request to the application:

1 $request->flash();

You may also use the flashOnly and flashExcept methods to flash a subset of the request data to
the session. These methods are useful for keeping sensitive information such as passwords out of
the session:

1 $request->flashOnly(['username', 'email']);

2

3 $request->flashExcept('password');

Flashing Input Then Redirecting

Since you often will want to flash input to the session and then redirect to the previous page, you
may easily chain input flashing onto a redirect using the withInput method:

1 return redirect('form')->withInput();

2

3 return redirect('form')->withInput(

4 $request->except('password')

5);

Retrieving Old Input

To retrieve flashed input from the previous request, use the old method on the Request instance.
The old method will pull the previously flashed input data from the session:

1 $username = $request->old('username');

HTTP Requests 185

Laravel also provides a global old helper. If you are displaying old input within a Blade template,
it is more convenient to use the old helper. If no old input exists for the given field, null will be
returned:

1 <input type="text" name="username" value="{{ old('username') }}">

Cookies

Retrieving Cookies From Requests

All cookies created by the Laravel framework are encrypted and signed with an authentication code,
meaning they will be considered invalid if they have been changed by the client. To retrieve a cookie
value from the request, use the cookie method on a Illuminate\Http\Request instance:

1 $value = $request->cookie('name');

Attaching Cookies To Responses

You may attach a cookie to an outgoing Illuminate\Http\Response instance using the cookie

method. You should pass the name, value, and number of minutes the cookie should be considered
valid to this method:

1 return response('Hello World')->cookie(

2 'name', 'value', $minutes

3);

The cookie method also accepts a few more arguments which are used less frequently. Generally,
these arguments have the same purpose andmeaning as the arguments that would be given to PHP’s
native setcookie¹⁷³ method:

1 return response('Hello World')->cookie(

2 'name', 'value', $minutes, $path, $domain, $secure, $httpOnly

¹⁷³https://secure.php.net/manual/en/function.setcookie.php

https://secure.php.net/manual/en/function.setcookie.php
https://secure.php.net/manual/en/function.setcookie.php

HTTP Requests 186

3);

Generating Cookie Instances

If you would like to generate a Symfony\Component\HttpFoundation\Cookie instance that can be
given to a response instance at a later time, you may use the global cookie helper. This cookie will
not be sent back to the client unless it is attached to a response instance:

1 $cookie = cookie('name', 'value', $minutes);

2

3 return response('Hello World')->cookie($cookie);

Files

Retrieving Uploaded Files

You may access uploaded files from a Illuminate\Http\Request instance using the filemethod or
using dynamic properties. The filemethod returns an instance of the Illuminate\Http\UploadedFile
class, which extends the PHP SplFileInfo class and provides a variety of methods for interacting
with the file:

1 $file = $request->file('photo');

2

3 $file = $request->photo;

You may determine if a file is present on the request using the hasFile method:

1 if ($request->hasFile('photo')) {

2 //

3 }

HTTP Requests 187

Validating Successful Uploads

In addition to checking if the file is present, you may verify that there were no problems uploading
the file via the isValid method:

1 if ($request->file('photo')->isValid()) {

2 //

3 }

File Paths & Extensions

The UploadedFile class also contains methods for accessing the file’s fully-qualified path and its
extension. The extension method will attempt to guess the file’s extension based on its contents.
This extension may be different from the extension that was supplied by the client:

1 $path = $request->photo->path();

2

3 $extension = $request->photo->extension();

Other File Methods

There are a variety of other methods available on UploadedFile instances. Check out the API
documentation for the class¹⁷⁴ for more information regarding these methods.

Storing Uploaded Files

To store an uploaded file, you will typically use one of your configured filesystems. The Uploaded-
File class has a store method which will move an uploaded file to one of your disks, which may
be a location on your local filesystem or even a cloud storage location like Amazon S3.

The store method accepts the path where the file should be stored relative to the filesystem’s
configured root directory. This path should not contain a file name, since an UUIDwill automatically
be generated to serve as the file name.

The store method also accepts an optional second argument for the name of the disk that should
be used to store the file. The method will return the path of the file relative to the disk’s root:

¹⁷⁴http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html

http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html
http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html
http://api.symfony.com/3.0/Symfony/Component/HttpFoundation/File/UploadedFile.html

HTTP Requests 188

1 $path = $request->photo->store('images');

2

3 $path = $request->photo->store('images', 's3');

If you do not want a file name to be automatically generated, you may use the storeAs method,
which accepts the path, file name, and disk name as its arguments:

1 $path = $request->photo->storeAs('images', 'filename.jpg');

2

3 $path = $request->photo->storeAs('images', 'filename.jpg', 's3');

HTTP Responses
• Creating Responses A> - Attaching Headers To Responses A> - Attaching Cookies To
Responses A> - Cookies & Encryption

• Redirects A> - Redirecting To Named Routes A> - Redirecting To Controller Actions A> -
Redirecting With Flashed Session Data

• Other Response Types A> - View Responses A> - JSON Responses A> - File Downloads A> -
File Responses

• Response Macros

Creating Responses

Strings & Arrays

All routes and controllers should return a response to be sent back to the user’s browser. Laravel
provides several different ways to return responses. The most basic response is simply returning a
string from a route or controller. The framework will automatically convert the string into a full
HTTP response:

1 Route::get('/', function () {

2 return 'Hello World';

3 });

In addition to returning strings from your routes and controllers, you may also return arrays. The
framework will automatically convert the array into a JSON response:

1 Route::get('/', function () {

2 return [1, 2, 3];

3 });

{tip} Did you know you can also return Eloquent collections from your routes or
controllers? They will automatically be converted to JSON. Give it a shot!

HTTP Responses 190

Response Objects

Typically, you won’t just be returning simple strings or arrays from your route actions. Instead, you
will be returning full Illuminate\Http\Response instances or views.

Returning a full Response instance allows you to customize the response’s HTTP status code and
headers. A Response instance inherits from the Symfony\Component\HttpFoundation\Response

class, which provides a variety of methods for building HTTP responses:

1 Route::get('home', function () {

2 return response('Hello World', 200)

3 ->header('Content-Type', 'text/plain');

4 });

Attaching Headers To Responses

Keep in mind that most response methods are chainable, allowing for the fluent construction of
response instances. For example, you may use the header method to add a series of headers to the
response before sending it back to the user:

1 return response($content)

2 ->header('Content-Type', $type)

3 ->header('X-Header-One', 'Header Value')

4 ->header('X-Header-Two', 'Header Value');

Or, you may use the withHeadersmethod to specify an array of headers to be added to the response:

1 return response($content)

2 ->withHeaders([

3 'Content-Type' => $type,

4 'X-Header-One' => 'Header Value',

5 'X-Header-Two' => 'Header Value',

6]);

Attaching Cookies To Responses

The cookie method on response instances allows you to easily attach cookies to the response. For
example, you may use the cookiemethod to generate a cookie and fluently attach it to the response

HTTP Responses 191

instance like so:

1 return response($content)

2 ->header('Content-Type', $type)

3 ->cookie('name', 'value', $minutes);

The cookie method also accepts a few more arguments which are used less frequently. Generally,
these arguments have the same purpose andmeaning as the arguments that would be given to PHP’s
native setcookie¹⁷⁵ method:

1 ->cookie($name, $value, $minutes, $path, $domain, $secure, $httpOnly)

Cookies & Encryption

By default, all cookies generated by Laravel are encrypted and signed so that they can’t be modified
or read by the client. If you would like to disable encryption for a subset of cookies generated by
your application, you may use the $except property of the App\Http\Middleware\EncryptCookies
middleware, which is located in the app/Http/Middleware directory:

1 /**

2 * The names of the cookies that should not be encrypted.

3 *

4 * @var array

5 */

6 protected $except = [

7 'cookie_name',

8];

Redirects

Redirect responses are instances of the Illuminate\Http\RedirectResponse class, and contain the
proper headers needed to redirect the user to another URL. There are several ways to generate a
RedirectResponse instance. The simplest method is to use the global redirect helper:

¹⁷⁵https://secure.php.net/manual/en/function.setcookie.php

https://secure.php.net/manual/en/function.setcookie.php
https://secure.php.net/manual/en/function.setcookie.php

HTTP Responses 192

1 Route::get('dashboard', function () {

2 return redirect('home/dashboard');

3 });

Sometimes you may wish to redirect the user to their previous location, such as when a submitted
form is invalid. You may do so by using the global back helper function. Since this feature utilizes
the session, make sure the route calling the back function is using the web middleware group or has
all of the session middleware applied:

1 Route::post('user/profile', function () {

2 // Validate the request...

3

4 return back()->withInput();

5 });

Redirecting To Named Routes

When you call the redirect helperwith no parameters, an instance of Illuminate\Routing\Redirector
is returned, allowing you to call any method on the Redirector instance. For example, to generate
a RedirectResponse to a named route, you may use the route method:

1 return redirect()->route('login');

If your route has parameters, you may pass them as the second argument to the route method:

1 // For a route with the following URI: profile/{id}

2

3 return redirect()->route('profile', ['id' => 1]);

Populating Parameters Via Eloquent Models

If you are redirecting to a route with an “ID” parameter that is being populated from an Eloquent
model, you may simply pass the model itself. The ID will be extracted automatically:

HTTP Responses 193

1 // For a route with the following URI: profile/{id}

2

3 return redirect()->route('profile', [$user]);

If you would like to customize the value that is placed in the route parameter, you should override
the getRouteKey method on your Eloquent model:

1 /**

2 * Get the value of the model's route key.

3 *

4 * @return mixed

5 */

6 public function getRouteKey()

7 {

8 return $this->slug;

9 }

Redirecting To Controller Actions

You may also generate redirects to controller actions. To do so, pass the controller and action name
to the action method. Remember, you do not need to specify the full namespace to the controller
since Laravel’s RouteServiceProvider will automatically set the base controller namespace:

1 return redirect()->action('HomeController@index');

If your controller route requires parameters, you may pass them as the second argument to the
action method:

1 return redirect()->action(

2 'UserController@profile', ['id' => 1]

3);

HTTP Responses 194

Redirecting With Flashed Session Data

Redirecting to a new URL and flashing data to the session are usually done at the same time.
Typically, this is done after successfully performing an action when you flash a success message
to the session. For convenience, you may create a RedirectResponse instance and flash data to the
session in a single, fluent method chain:

1 Route::post('user/profile', function () {

2 // Update the user's profile...

3

4 return redirect('dashboard')->with('status', 'Profile updated!');

5 });

After the user is redirected, you may display the flashed message from the session. For example,
using Blade syntax:

1 @if (session('status'))

2 <div class="alert alert-success">

3 {{ session('status') }}

4 </div>

5 @endif

Other Response Types

The response helper may be used to generate other types of response instances. When the response
helper is calledwithout arguments, an implementation of the Illuminate\Contracts\Routing\ResponseFactory
contract is returned. This contract provides several helpful methods for generating responses.

View Responses

If you need control over the response’s status and headers but also need to return a view as the
response’s content, you should use the view method:

1 return response()

2 ->view('hello', $data, 200)

HTTP Responses 195

3 ->header('Content-Type', $type);

Of course, if you do not need to pass a custom HTTP status code or custom headers, you should use
the global view helper function.

JSON Responses

The json method will automatically set the Content-Type header to application/json, as well as
convert the given array to JSON using the json_encode PHP function:

1 return response()->json([

2 'name' => 'Abigail',

3 'state' => 'CA'

4]);

If you would like to create a JSONP response, you may use the json method in combination with
the withCallback method:

1 return response()

2 ->json(['name' => 'Abigail', 'state' => 'CA'])

3 ->withCallback($request->input('callback'));

File Downloads

The downloadmethodmay be used to generate a response that forces the user’s browser to download
the file at the given path. The download method accepts a file name as the second argument to the
method, which will determine the file name that is seen by the user downloading the file. Finally,
you may pass an array of HTTP headers as the third argument to the method:

1 return response()->download($pathToFile);

2

3 return response()->download($pathToFile, $name, $headers);

HTTP Responses 196

{note} Symfony HttpFoundation, which manages file downloads, requires the file being
downloaded to have an ASCII file name.

File Responses

The filemethodmay be used to display a file, such as an image or PDF, directly in the user’s browser
instead of initiating a download. This method accepts the path to the file as its first argument and
an array of headers as its second argument:

1 return response()->file($pathToFile);

2

3 return response()->file($pathToFile, $headers);

Response Macros

If you would like to define a custom response that you can re-use in a variety of your routes and
controllers, you may use the macro method on the Response facade. For example, from a service
provider’s boot method:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\ServiceProvider;

6 use Illuminate\Support\Facades\Response;

7

8 class ResponseMacroServiceProvider extends ServiceProvider

9 {

10 /**

11 * Register the application's response macros.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 Response::macro('caps', function ($value) {

18 return Response::make(strtoupper($value));

19 });

HTTP Responses 197

20 }

21 }

The macro function accepts a name as its first argument, and a Closure as its second. The macro’s
Closure will be executed when calling the macro name from a ResponseFactory implementation or
the response helper:

1 return response()->caps('foo');

HTTP Redirects
• Creating Redirects
• Redirecting To Named Routes
• Redirecting To Controller Actions
• Redirecting With Flashed Session Data

Creating Redirects

Redirect responses are instances of the Illuminate\Http\RedirectResponse class, and contain the
proper headers needed to redirect the user to another URL. There are several ways to generate a
RedirectResponse instance. The simplest method is to use the global redirect helper:

1 Route::get('dashboard', function () {

2 return redirect('home/dashboard');

3 });

Sometimes you may wish to redirect the user to their previous location, such as when a submitted
form is invalid. You may do so by using the global back helper function. Since this feature utilizes
the session, make sure the route calling the back function is using the web middleware group or has
all of the session middleware applied:

1 Route::post('user/profile', function () {

2 // Validate the request...

3

4 return back()->withInput();

5 });

Redirecting To Named Routes

When you call the redirect helperwith no parameters, an instance of Illuminate\Routing\Redirector
is returned, allowing you to call any method on the Redirector instance. For example, to generate
a RedirectResponse to a named route, you may use the route method:

HTTP Redirects 199

1 return redirect()->route('login');

If your route has parameters, you may pass them as the second argument to the route method:

1 // For a route with the following URI: profile/{id}

2

3 return redirect()->route('profile', ['id' => 1]);

Populating Parameters Via Eloquent Models

If you are redirecting to a route with an “ID” parameter that is being populated from an Eloquent
model, you may simply pass the model itself. The ID will be extracted automatically:

1 // For a route with the following URI: profile/{id}

2

3 return redirect()->route('profile', [$user]);

If you would like to customize the value that is placed in the route parameter, you should override
the getRouteKey method on your Eloquent model:

1 /**

2 * Get the value of the model's route key.

3 *

4 * @return mixed

5 */

6 public function getRouteKey()

7 {

8 return $this->slug;

9 }

HTTP Redirects 200

Redirecting To Controller Actions

You may also generate redirects to controller actions. To do so, pass the controller and action name
to the action method. Remember, you do not need to specify the full namespace to the controller
since Laravel’s RouteServiceProvider will automatically set the base controller namespace:

1 return redirect()->action('HomeController@index');

If your controller route requires parameters, you may pass them as the second argument to the
action method:

1 return redirect()->action(

2 'UserController@profile', ['id' => 1]

3);

Redirecting With Flashed Session Data

Redirecting to a new URL and flashing data to the session are usually done at the same time.
Typically, this is done after successfully performing an action when you flash a success message
to the session. For convenience, you may create a RedirectResponse instance and flash data to the
session in a single, fluent method chain:

1 Route::post('user/profile', function () {

2 // Update the user's profile...

3

4 return redirect('dashboard')->with('status', 'Profile updated!');

5 });

After the user is redirected, you may display the flashed message from the session. For example,
using Blade syntax:

1 @if (session('status'))

2 <div class="alert alert-success">

3 {{ session('status') }}

HTTP Redirects 201

4 </div>

5 @endif

HTTP Session
• Introduction A> - Configuration A> - Driver Prerequisites
• Using The Session A> - Retrieving Data A> - Storing Data A> - Flash Data A> - Deleting Data
A> - Regenerating The Session ID

• Adding Custom Session Drivers A> - Implementing The Driver A> - Registering The Driver

Introduction

Since HTTP driven applications are stateless, sessions provide a way to store information about the
user across multiple requests. Laravel ships with a variety of session backends that are accessed
through an expressive, unified API. Support for popular backends such as Memcached¹⁷⁶, Redis¹⁷⁷,
and databases is included out of the box.

Configuration

The session configuration file is stored at config/session.php. Be sure to review the options
available to you in this file. By default, Laravel is configured to use the file session driver, whichwill
work well for many applications. In production applications, you may consider using the memcached
or redis drivers for even faster session performance.

The session driver configuration option defines where session data will be stored for each request.
Laravel ships with several great drivers out of the box:

<div class=”content-list” markdown=”1”> - file - sessions are stored in storage/framework/ses-

sions. - cookie - sessions are stored in secure, encrypted cookies. - database - sessions are stored
in a relational database. - memcached / redis - sessions are stored in one of these fast, cache based
stores. - array - sessions are stored in a PHP array and will not be persisted. </div>

{tip} The array driver is used during testing and prevents the data stored in the session
from being persisted.

Driver Prerequisites

Database

When using the database session driver, you will need to create a table to contain the session items.
Below is an example Schema declaration for the table:

¹⁷⁶https://memcached.org
¹⁷⁷http://redis.io

https://memcached.org/
http://redis.io/
https://memcached.org/
http://redis.io/

HTTP Session 203

1 Schema::create('sessions', function ($table) {

2 $table->string('id')->unique();

3 $table->integer('user_id')->nullable();

4 $table->string('ip_address', 45)->nullable();

5 $table->text('user_agent')->nullable();

6 $table->text('payload');

7 $table->integer('last_activity');

8 });

You may use the session:table Artisan command to generate this migration:

1 php artisan session:table

2

3 php artisan migrate

Redis

Before using Redis sessions with Laravel, you will need to install the predis/predis package (∼1.0)
via Composer. You may configure your Redis connections in the database configuration file. In the
session configuration file, the connection option may be used to specify which Redis connection
is used by the session.

Using The Session

Retrieving Data

There are two primary ways of working with session data in Laravel: the global session helper and
via a Request instance. First, let’s look at accessing the session via a Request instance, which can be
type-hinted on a controller method. Remember, controller method dependencies are automatically
injected via the Laravel service container:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6 use App\Http\Controllers\Controller;

HTTP Session 204

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param Request $request

14 * @param int $id

15 * @return Response

16 */

17 public function show(Request $request, $id)

18 {

19 $value = $request->session()->get('key');

20

21 //

22 }

23 }

When you retrieve a value from the session, you may also pass a default value as the second
argument to the get method. This default value will be returned if the specified key does not exist
in the session. If you pass a Closure as the default value to the get method and the requested key
does not exist, the Closure will be executed and its result returned:

1 $value = $request->session()->get('key', 'default');

2

3 $value = $request->session()->get('key', function () {

4 return 'default';

5 });

The Global Session Helper

You may also use the global session PHP function to retrieve and store data in the session. When
the session helper is called with a single, string argument, it will return the value of that session
key. When the helper is called with an array of key / value pairs, those values will be stored in the
session:

1 Route::get('home', function () {

2 // Retrieve a piece of data from the session...

HTTP Session 205

3 $value = session('key');

4

5 // Specifying a default value...

6 $value = session('key', 'default');

7

8 // Store a piece of data in the session...

9 session(['key' => 'value']);

10 });

{tip} There is little practical difference between using the session via an HTTP request
instance versus using the global session helper. Both methods are testable via the
assertSessionHas method which is available in all of your test cases.

Retrieving All Session Data

If you would like to retrieve all the data in the session, you may use the all method:

1 $data = $request->session()->all();

Determining If An Item Exists In The Session

To determine if a value is present in the session, you may use the has method. The has method
returns true if the value is present and is not null:

1 if ($request->session()->has('users')) {

2 //

3 }

To determine if a value is present in the session, even if its value is null, you may use the exists
method. The exists method returns true if the value is present:

1 if ($request->session()->exists('users')) {

2 //

3 }

HTTP Session 206

Storing Data

To store data in the session, you will typically use the put method or the session helper:

1 // Via a request instance...

2 $request->session()->put('key', 'value');

3

4 // Via the global helper...

5 session(['key' => 'value']);

Pushing To Array Session Values

The pushmethod may be used to push a new value onto a session value that is an array. For example,
if the user.teams key contains an array of team names, you may push a new value onto the array
like so:

1 $request->session()->push('user.teams', 'developers');

Retrieving & Deleting An Item

The pull method will retrieve and delete an item from the session in a single statement:

1 $value = $request->session()->pull('key', 'default');

Flash Data

Sometimes you may wish to store items in the session only for the next request. You may do so
using the flash method. Data stored in the session using this method will only be available during
the subsequent HTTP request, and then will be deleted. Flash data is primarily useful for short-lived
status messages:

HTTP Session 207

1 $request->session()->flash('status', 'Task was successful!');

If you need to keep your flash data around for several requests, you may use the reflash method,
which will keep all of the flash data for an additional request. If you only need to keep specific flash
data, you may use the keep method:

1 $request->session()->reflash();

2

3 $request->session()->keep(['username', 'email']);

Deleting Data

The forget method will remove a piece of data from the session. If you would like to remove all
data from the session, you may use the flush method:

1 $request->session()->forget('key');

2

3 $request->session()->flush();

Regenerating The Session ID

Regenerating the session ID is often done in order to prevent malicious users from exploiting a
session fixation¹⁷⁸ attack on your application.

Laravel automatically regenerates the session ID during authentication if you are using the built-in
LoginController; however, if you need to manually regenerate the session ID, you may use the
regenerate method.

1 $request->session()->regenerate();

¹⁷⁸https://en.wikipedia.org/wiki/Session_fixation

https://en.wikipedia.org/wiki/Session_fixation
https://en.wikipedia.org/wiki/Session_fixation

HTTP Session 208

Adding Custom Session Drivers

Implementing The Driver

Your custom session driver should implement the SessionHandlerInterface. This interface con-
tains just a few simple methods we need to implement. A stubbed MongoDB implementation looks
something like this:

1 <?php

2

3 namespace App\Extensions;

4

5 class MongoHandler implements SessionHandlerInterface

6 {

7 public function open($savePath, $sessionName) {}

8 public function close() {}

9 public function read($sessionId) {}

10 public function write($sessionId, $data) {}

11 public function destroy($sessionId) {}

12 public function gc($lifetime) {}

13 }

{tip} Laravel does not ship with a directory to contain your extensions. You are free
to place them anywhere you like. In this example, we have created an Extensions

directory to house the MongoHandler.

Since the purpose of these methods is not readily understandable, let’s quickly cover what each of
the methods do:

<div class=”content-list” markdown=”1”> - The open method would typically be used in file based
session store systems. Since Laravel ships with a file session driver, you will almost never need
to put anything in this method. You can leave it as an empty stub. It is simply a fact of poor
interface design (which we’ll discuss later) that PHP requires us to implement this method. - The
close method, like the open method, can also usually be disregarded. For most drivers, it is not
needed. - The read method should return the string version of the session data associated with the
given $sessionId. There is no need to do any serialization or other encoding when retrieving or
storing session data in your driver, as Laravel will perform the serialization for you. - The write

method should write the given $data string associated with the $sessionId to some persistent
storage system, such as MongoDB, Dynamo, etc. Again, you should not perform any serialization
- Laravel will have already handled that for you. - The destroy method should remove the data
associated with the $sessionId from persistent storage. - The gc method should destroy all session

HTTP Session 209

data that is older than the given $lifetime, which is a UNIX timestamp. For self-expiring systems
like Memcached and Redis, this method may be left empty. </div>

Registering The Driver

Once your driver has been implemented, you are ready to register it with the framework. To add
additional drivers to Laravel’s session backend, you may use the extend method on the Session

facade. You should call the extendmethod from the bootmethod of a service provider. You may do
this from the existing AppServiceProvider or create an entirely new provider:

1 <?php

2

3 namespace App\Providers;

4

5 use App\Extensions\MongoSessionStore;

6 use Illuminate\Support\Facades\Session;

7 use Illuminate\Support\ServiceProvider;

8

9 class SessionServiceProvider extends ServiceProvider

10 {

11 /**

12 * Perform post-registration booting of services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Session::extend('mongo', function ($app) {

19 // Return implementation of SessionHandlerInterface...

20 return new MongoSessionStore;

21 });

22 }

23

24 /**

25 * Register bindings in the container.

26 *

27 * @return void

28 */

29 public function register()

30 {

31 //

32 }

HTTP Session 210

33 }

Once the session driver has been registered, you may use the mongo driver in your config/ses-
sion.php configuration file.

Validation
• Introduction
• Validation Quickstart A> - Defining The Routes A> - Creating The Controller A> - Writing
The Validation Logic A> - Displaying The Validation Errors

• Form Request Validation A> - Creating Form Requests A> - Authorizing Form Requests A> -
Customizing The Error Format A> - Customizing The Error Messages

• Manually Creating Validators A> - Automatic Redirection A> - Named Error Bags A> - After
Validation Hook

• Working With Error Messages A> - Custom Error Messages
• Available Validation Rules
• Conditionally Adding Rules
• Validating Arrays
• Custom Validation Rules

Introduction

Laravel provides several different approaches to validate your application’s incoming data. By
default, Laravel’s base controller class uses a ValidatesRequests trait which provides a convenient
method to validate incoming HTTP request with a variety of powerful validation rules.

Validation Quickstart

To learn about Laravel’s powerful validation features, let’s look at a complete example of validating
a form and displaying the error messages back to the user.

Defining The Routes

First, let’s assume we have the following routes defined in our routes/web.php file:

1 Route::get('post/create', 'PostController@create');

2

3 Route::post('post', 'PostController@store');

Of course, the GET route will display a form for the user to create a new blog post, while the POST
route will store the new blog post in the database.

Validation 212

Creating The Controller

Next, let’s take a look at a simple controller that handles these routes. We’ll leave the storemethod
empty for now:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6 use App\Http\Controllers\Controller;

7

8 class PostController extends Controller

9 {

10 /**

11 * Show the form to create a new blog post.

12 *

13 * @return Response

14 */

15 public function create()

16 {

17 return view('post.create');

18 }

19

20 /**

21 * Store a new blog post.

22 *

23 * @param Request $request

24 * @return Response

25 */

26 public function store(Request $request)

27 {

28 // Validate and store the blog post...

29 }

30 }

Writing The Validation Logic

Now we are ready to fill in our store method with the logic to validate the new blog post. If you
examine your application’s base controller (App\Http\Controllers\Controller) class, you will see
that the class uses a ValidatesRequests trait. This trait provides a convenient validate method to
all of your controllers.

Validation 213

The validate method accepts an incoming HTTP request and a set of validation rules. If the
validation rules pass, your code will keep executing normally; however, if validation fails, an
exception will be thrown and the proper error response will automatically be sent back to the user. In
the case of a traditional HTTP request, a redirect response will be generated, while a JSON response
will be sent for AJAX requests.

To get a better understanding of the validate method, let’s jump back into the store method:

1 /**

2 * Store a new blog post.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function store(Request $request)

8 {

9 $this->validate($request, [

10 'title' => 'required|unique:posts|max:255',

11 'body' => 'required',

12]);

13

14 // The blog post is valid, store in database...

15 }

As you can see, we simply pass the incoming HTTP request and desired validation rules into the
validatemethod. Again, if the validation fails, the proper response will automatically be generated.
If the validation passes, our controller will continue executing normally.

Stopping On First Validation Failure

Sometimes you may wish to stop running validation rules on an attribute after the first validation
failure. To do so, assign the bail rule to the attribute:

1 $this->validate($request, [

2 'title' => 'bail|required|unique:posts|max:255',

3 'body' => 'required',

4]);

In this example, if the required rule on the title attribute fails, the unique rule will not be checked.
Rules will be validated in the order they are assigned.

Validation 214

A Note On Nested Attributes

If your HTTP request contains “nested” parameters, you may specify them in your validation rules
using “dot” syntax:

1 $this->validate($request, [

2 'title' => 'required|unique:posts|max:255',

3 'author.name' => 'required',

4 'author.description' => 'required',

5]);

Displaying The Validation Errors

So, what if the incoming request parameters do not pass the given validation rules? As mentioned
previously, Laravel will automatically redirect the user back to their previous location. In addition,
all of the validation errors will automatically be flashed to the session.

Again, notice that we did not have to explicitly bind the error messages to the view in our
GET route. This is because Laravel will check for errors in the session data, and automatically
bind them to the view if they are available. The $errors variable will be an instance of Illu-

minate\Support\MessageBag. For more information on working with this object, check out its
documentation.

{tip} The $errors variable is bound to the view by the Illuminate\View\Middleware\ShareErrorsFromSession
middleware, which is provided by the web middleware group.When this middleware
is applied an $errors variable will always be available in your views, allowing you
to conveniently assume the $errors variable is always defined and can be safely used.

So, in our example, the user will be redirected to our controller’s create method when validation
fails, allowing us to display the error messages in the view:

1 <!-- /resources/views/post/create.blade.php -->

2

3 <h1>Create Post</h1>

4

5 @if (count($errors) > 0)

6 <div class="alert alert-danger">

7

8 @foreach ($errors->all() as $error)

9 {{ $error }}

10 @endforeach

Validation 215

11

12 </div>

13 @endif

14

15 <!-- Create Post Form -->

Customizing The Flashed Error Format

If you wish to customize the format of the validation errors that are flashed to the session when
validation fails, override the formatValidationErrors on your base controller. Don’t forget to
import the Illuminate\Contracts\Validation\Validator class at the top of the file:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Foundation\Bus\DispatchesJobs;

6 use Illuminate\Contracts\Validation\Validator;

7 use Illuminate\Routing\Controller as BaseController;

8 use Illuminate\Foundation\Validation\ValidatesRequests;

9

10 abstract class Controller extends BaseController

11 {

12 use DispatchesJobs, ValidatesRequests;

13

14 /**

15 * {@inheritdoc}

16 */

17 protected function formatValidationErrors(Validator $validator)

18 {

19 return $validator->errors()->all();

20 }

21 }

AJAX Requests & Validation

In this example, we used a traditional form to send data to the application. However, many
applications use AJAX requests. When using the validatemethod during an AJAX request, Laravel
will not generate a redirect response. Instead, Laravel generates a JSON response containing all of
the validation errors. This JSON response will be sent with a 422 HTTP status code.

Validation 216

Form Request Validation

Creating Form Requests

For more complex validation scenarios, you may wish to create a “form request”. Form requests
are custom request classes that contain validation logic. To create a form request class, use the
make:request Artisan CLI command:

1 php artisan make:request StoreBlogPost

The generated class will be placed in the app/Http/Requests directory. If this directory does not
exist, it will be created when you run the make:request command. Let’s add a few validation rules
to the rules method:

1 /**

2 * Get the validation rules that apply to the request.

3 *

4 * @return array

5 */

6 public function rules()

7 {

8 return [

9 'title' => 'required|unique:posts|max:255',

10 'body' => 'required',

11];

12 }

So, how are the validation rules evaluated? All you need to do is type-hint the request on your
controller method. The incoming form request is validated before the controller method is called,
meaning you do not need to clutter your controller with any validation logic:

1 /**

2 * Store the incoming blog post.

3 *

4 * @param StoreBlogPost $request

5 * @return Response

6 */

7 public function store(StoreBlogPost $request)

Validation 217

8 {

9 // The incoming request is valid...

10 }

If validation fails, a redirect response will be generated to send the user back to their previous
location. The errors will also be flashed to the session so they are available for display. If the request
was an AJAX request, a HTTP response with a 422 status code will be returned to the user including
a JSON representation of the validation errors.

Authorizing Form Requests

The form request class also contains an authorize method. Within this method, you may check if
the authenticated user actually has the authority to update a given resource. For example, if a user
is attempting to update a blog post comment, do they actually own that comment? For example:

1 /**

2 * Determine if the user is authorized to make this request.

3 *

4 * @return bool

5 */

6 public function authorize()

7 {

8 $comment = Comment::find($this->route('comment'));

9

10 return $comment && $this->user()->can('update', $comment);

11 }

Since all form requests extend the base Laravel request class, we may use the usermethod to access
the currently authenticated user. Also note the call to the route method in the example above. This
method grants you access to the URI parameters defined on the route being called, such as the
{comment} parameter in the example below:

1 Route::post('comment/{comment}');

If the authorize method returns false, a HTTP response with a 403 status code will automatically
be returned and your controller method will not execute.

Validation 218

If you plan to have authorization logic in another part of your application, simply return true from
the authorize method:

1 /**

2 * Determine if the user is authorized to make this request.

3 *

4 * @return bool

5 */

6 public function authorize()

7 {

8 return true;

9 }

Customizing The Error Format

If you wish to customize the format of the validation errors that are flashed to the session when
validation fails, override the formatErrors on your base request (App\Http\Requests\Request).
Don’t forget to import the Illuminate\Contracts\Validation\Validator class at the top of the
file:

1 /**

2 * {@inheritdoc}

3 */

4 protected function formatErrors(Validator $validator)

5 {

6 return $validator->errors()->all();

7 }

Customizing The Error Messages

Youmay customize the error messages used by the form request by overriding the messagesmethod.
This method should return an array of attribute / rule pairs and their corresponding error messages:

1 /**

2 * Get the error messages for the defined validation rules.

3 *

4 * @return array

5 */

Validation 219

6 public function messages()

7 {

8 return [

9 'title.required' => 'A title is required',

10 'body.required' => 'A message is required',

11];

12 }

Manually Creating Validators

If you do not want to use the ValidatesRequests trait’s validate method, you may create a
validator instance manually using the Validator facade. The make method on the facade generates
a new validator instance:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Validator;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class PostController extends Controller

10 {

11 /**

12 * Store a new blog post.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

18 {

19 $validator = Validator::make($request->all(), [

20 'title' => 'required|unique:posts|max:255',

21 'body' => 'required',

22]);

23

24 if ($validator->fails()) {

25 return redirect('post/create')

26 ->withErrors($validator)

Validation 220

27 ->withInput();

28 }

29

30 // Store the blog post...

31 }

32 }

The first argument passed to the make method is the data under validation. The second argument is
the validation rules that should be applied to the data.

After checking if the request validation failed, you may use the withErrors method to flash the
error messages to the session. When using this method, the $errors variable will automatically be
shared with your views after redirection, allowing you to easily display them back to the user. The
withErrors method accepts a validator, a MessageBag, or a PHP array.

Automatic Redirection

If you would like to create a validator instance manually but still take advantage of the automatic
redirection offered by the ValidatesRequest trait, you may call the validatemethod on an existing
validator instance. If validation fails, the user will automatically be redirected or, in the case of an
AJAX request, a JSON response will be returned:

1 Validator::make($request->all(), [

2 'title' => 'required|unique:posts|max:255',

3 'body' => 'required',

4])->validate();

Named Error Bags

If you have multiple forms on a single page, you may wish to name the MessageBag of errors,
allowing you to retrieve the error messages for a specific form. Simply pass a name as the second
argument to withErrors:

1 return redirect('register')

2 ->withErrors($validator, 'login');

You may then access the named MessageBag instance from the $errors variable:

Validation 221

1 {{ $errors->login->first('email') }}

After Validation Hook

The validator also allows you to attach callbacks to be run after validation is completed. This allows
you to easily perform further validation and even addmore error messages to the message collection.
To get started, use the after method on a validator instance:

1 $validator = Validator::make(...);

2

3 $validator->after(function ($validator) {

4 if ($this->somethingElseIsInvalid()) {

5 $validator->errors()->add('field', 'Something is wrong with this field!'\

6);

7 }

8 });

9

10 if ($validator->fails()) {

11 //

12 }

Working With Error Messages

After calling the errorsmethod on a Validator instance, youwill receive an Illuminate\Support\MessageBag
instance, which has a variety of convenient methods for working with error messages. The $errors
variable that is automatically made available to all views is also an instance of the MessageBag class.

Retrieving The First Error Message For A Field

To retrieve the first error message for a given field, use the first method:

1 $errors = $validator->errors();

2

3 echo $errors->first('email');

Validation 222

Retrieving All Error Messages For A Field

If you need to retrieve an array of all the messages for a given field, use the get method:

1 foreach ($errors->get('email') as $message) {

2 //

3 }

If you are validating an array form field, you may retrieve all of the messages for each of the array
elements using the * character:

1 foreach ($errors->get('attachments.*') as $message) {

2 //

3 }

Retrieving All Error Messages For All Fields

To retrieve an array of all messages for all fields, use the all method:

1 foreach ($errors->all() as $message) {

2 //

3 }

Determining If Messages Exist For A Field

The has method may be used to determine if any error messages exist for a given field:

1 if ($errors->has('email')) {

2 //

3 }

Validation 223

Custom Error Messages

If needed, youmay use custom errormessages for validation instead of the defaults. There are several
ways to specify custom messages. First, you may pass the custom messages as the third argument
to the Validator::make method:

1 $messages = [

2 'required' => 'The :attribute field is required.',

3];

4

5 $validator = Validator::make($input, $rules, $messages);

In this example, the :attribute place-holder will be replaced by the actual name of the field under
validation. You may also utilize other place-holders in validation messages. For example:

1 $messages = [

2 'same' => 'The :attribute and :other must match.',

3 'size' => 'The :attribute must be exactly :size.',

4 'between' => 'The :attribute must be between :min - :max.',

5 'in' => 'The :attribute must be one of the following types: :values',

6];

Specifying A Custom Message For A Given Attribute

Sometimes you may wish to specify a custom error messages only for a specific field. You may do
so using “dot” notation. Specify the attribute’s name first, followed by the rule:

1 $messages = [

2 'email.required' => 'We need to know your e-mail address!',

3];

Specifying Custom Messages In Language Files

In most cases, you will probably specify your custom messages in a language file instead of
passing them directly to the Validator. To do so, add your messages to custom array in the
resources/lang/xx/validation.php language file.

Validation 224

1 'custom' => [

2 'email' => [

3 'required' => 'We need to know your e-mail address!',

4],

5],

Specifying Custom Attributes In Language Files

If you would like the :attribute portion of your validation message to be replaced with a
custom attribute name, you may specify the custom name in the attributes array of your
resources/lang/xx/validation.php language file:

1 'attributes' => [

2 'email' => 'email address',

3],

Available Validation Rules

Below is a list of all available validation rules and their function:

<style> A> .collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> .collection-method-list a { A> display: block; A> }

</style>

<div class=”collection-method-list” markdown=”1”>

Accepted Active URL After (Date) Alpha Alpha Dash Alpha Numeric Array Before (Date) Between
Boolean Confirmed Date Date Format Different Digits Digits Between Dimensions (Image Files)
Distinct E-Mail Exists (Database) File Filled Image (File) In In Array Integer IP Address JSON Max
MIMETypesMIMEType By File ExtensionMinNullable Not InNumeric Present Regular Expression
Required Required If Required Unless RequiredWith RequiredWith All RequiredWithout Required
Without All Same Size String Timezone Unique (Database) URL

</div>

accepted

The field under validation must be yes, on, 1, or true. This is useful for validating “Terms of Service”
acceptance.

Validation 225

active_url

The field under validation must have a valid A or AAAA record according to the dns_get_record
PHP function.

after:date

The field under validation must be a value after a given date. The dates will be passed into the
strtotime PHP function:

1 'start_date' => 'required|date|after:tomorrow'

Instead of passing a date string to be evaluated by strtotime, you may specify another field to
compare against the date:

1 'finish_date' => 'required|date|after:start_date'

alpha

The field under validation must be entirely alphabetic characters.

alpha_dash

The field under validation may have alpha-numeric characters, as well as dashes and underscores.

alpha_num

The field under validation must be entirely alpha-numeric characters.

array

The field under validation must be a PHP array.

before:date

The field under validation must be a value preceding the given date. The dates will be passed into
the PHP strtotime function.

Validation 226

between:min,max

The field under validation must have a size between the givenmin and max. Strings, numerics, and
files are evaluated in the same fashion as the size rule.

boolean

The field under validation must be able to be cast as a boolean. Accepted input are true, false, 1,
0, "1", and "0".

confirmed

The field under validation must have a matching field of foo_confirmation. For example, if the
field under validation is password, a matching password_confirmation field must be present in the
input.

date

The field under validation must be a valid date according to the strtotime PHP function.

date_format:format

The field under validation must match the given format. The format will be evaluated using the PHP
date_parse_from_format function. You should use either date or date_format when validating a
field, not both.

different:field

The field under validation must have a different value than field.

digits:value

The field under validation must be numeric and must have an exact length of value.

digits_between:min,max

The field under validation must have a length between the given min and max.

dimensions

The file under validation must be an image meeting the dimension constraints as specified by the
rule’s parameters:

Validation 227

1 'avatar' => 'dimensions:min_width=100,min_height=200'

Available constraints are: min_width, max_width, min_height, max_height, width, height, ratio.

A ratio constraint should be represented as width divided by height. This can be specified either by
a statement like 3/2 or a float like 1.5:

1 'avatar' => 'dimensions:ratio=3/2'

distinct

When working with arrays, the field under validation must not have any duplicate values.

1 'foo.*.id' => 'distinct'

email

The field under validation must be formatted as an e-mail address.

exists:table,column

The field under validation must exist on a given database table.

Basic Usage Of Exists Rule

1 'state' => 'exists:states'

Specifying A Custom Column Name

1 'state' => 'exists:states,abbreviation'

Validation 228

Occasionally, you may need to specify a specific database connection to be used for the exists

query. You can accomplish this by prepending the connection name to the table name using “dot”
syntax:

1 'email' => 'exists:connection.staff,email'

If you would like to customize the query executed by the validation rule, you may use the Rule class
to fluently define the rule. In this example, we’ll also specify the validation rules as an array instead
of using the | character to delimit them:

1 use Illuminate\Validation\Rule;

2

3 Validator::make($data, [

4 'email' => [

5 'required',

6 Rule::exists('staff')->where(function ($query) {

7 $query->where('account_id', 1);

8 }),

9],

10]);

file

The field under validation must be a successfully uploaded file.

filled

The field under validation must not be empty when it is present.

image

The file under validation must be an image (jpeg, png, bmp, gif, or svg)

in:foo,bar,…

The field under validation must be included in the given list of values.

in_array:anotherfield

The field under validation must exist in anotherfield’s values.

Validation 229

integer

The field under validation must be an integer.

ip

The field under validation must be an IP address.

json

The field under validation must be a valid JSON string.

max:value

The field under validation must be less than or equal to a maximum value. Strings, numerics, and
files are evaluated in the same fashion as the size rule.

mimetypes:text/plain,…

The file under validation must match one of the given MIME types:

1 'video' => 'mimetypes:video/avi,video/mpeg,video/quicktime'

To determine the MIME type of the uploaded file, the file’s contents will be read and the framework
will attempt to guess the MIME type, which may be different from the client provided MIME type.

mimes:foo,bar,…

The file under validation must have a MIME type corresponding to one of the listed extensions.

Basic Usage Of MIME Rule

1 'photo' => 'mimes:jpeg,bmp,png'

Even though you only need to specify the extensions, this rule actually validates against the MIME
type of the file by reading the file’s contents and guessing its MIME type.

A full listing of MIME types and their corresponding extensions may be found at the following
location: https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types¹⁷⁹

¹⁷⁹https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types
https://svn.apache.org/repos/asf/httpd/httpd/trunk/docs/conf/mime.types

Validation 230

min:value

The field under validation must have a minimum value. Strings, numerics, and files are evaluated
in the same fashion as the size rule.

nullable

The field under validation may be null. This is particularly useful when validating primitive such
as strings and integers that can contain null values.

not_in:foo,bar,…

The field under validation must not be included in the given list of values.

numeric

The field under validation must be numeric.

present

The field under validation must be present in the input data but can be empty.

regex:pattern

The field under validation must match the given regular expression.

Note: When using the regex pattern, it may be necessary to specify rules in an array instead of
using pipe delimiters, especially if the regular expression contains a pipe character.

required

The field under validation must be present in the input data and not empty. A field is considered
“empty” if one of the following conditions are true:

<div class=”content-list” markdown=”1”>

• The value is null.
• The value is an empty string.
• The value is an empty array or empty Countable object.
• The value is an uploaded file with no path.

</div>

Validation 231

required_if:anotherfield,value,…

The field under validation must be present and not empty if the anotherfield field is equal to any
value.

required_unless:anotherfield,value,…

The field under validation must be present and not empty unless the anotherfield field is equal to
any value.

required_with:foo,bar,…

The field under validation must be present and not empty only if any of the other specified fields
are present.

required_with_all:foo,bar,…

The field under validation must be present and not empty only if all of the other specified fields are
present.

required_without:foo,bar,…

The field under validation must be present and not empty only when any of the other specified fields
are not present.

required_without_all:foo,bar,…

The field under validation must be present and not empty only when all of the other specified fields
are not present.

same:field

The given field must match the field under validation.

size:value

The field under validation must have a size matching the given value. For string data, value
corresponds to the number of characters. For numeric data, value corresponds to a given integer
value. For an array, size corresponds to the count of the array. For files, size corresponds to the file
size in kilobytes.

string

The field under validation must be a string. If you would like to allow the field to also be null, you
should assign the nullable rule to the field.

Validation 232

timezone

The field under validation must be a valid timezone identifier according to the timezone_identi-
fiers_list PHP function.

unique:table,column,except,idColumn

The field under validation must be unique in a given database table. If the column option is not
specified, the field name will be used.

Specifying A Custom Column Name:

1 'email' => 'unique:users,email_address'

Custom Database Connection

Occasionally, you may need to set a custom connection for database queries made by the Validator.
As seen above, setting unique:users as a validation rule will use the default database connection to
query the database. To override this, specify the connection and the table name using “dot” syntax:

1 'email' => 'unique:connection.users,email_address'

Forcing A Unique Rule To Ignore A Given ID:

Sometimes, you may wish to ignore a given ID during the unique check. For example, consider an
“update profile” screen that includes the user’s name, e-mail address, and location. Of course, you
will want to verify that the e-mail address is unique. However, if the user only changes the name
field and not the e-mail field, you do not want a validation error to be thrown because the user is
already the owner of the e-mail address.

To instruct the validator to ignore the user’s ID, we’ll use the Rule class to fluently define the rule.
In this example, we’ll also specify the validation rules as an array instead of using the | character
to delimit the rules:

1 use Illuminate\Validation\Rule;

2

3 Validator::make($data, [

4 'email' => [

5 'required',

6 Rule::unique('users')->ignore($user->id),

7],

Validation 233

8]);

If your table uses a primary key column name other than id, you may specify the name of the
column when calling the ignore method:

1 'email' => Rule::unique('users')->ignore($user->id, 'user_id')

Adding Additional Where Clauses:

Youmay also specify additional query constraints by customizing the query using the wheremethod.
For example, let’s add a constraint that verifies the account_id is 1:

1 'email' => Rule::unique('users')->where(function ($query) {

2 $query->where('account_id', 1);

3 })

url

The field under validation must be a valid URL.

Conditionally Adding Rules

Validating When Present

In some situations, you may wish to run validation checks against a field only if that field is present
in the input array. To quickly accomplish this, add the sometimes rule to your rule list:

1 $v = Validator::make($data, [

2 'email' => 'sometimes|required|email',

3]);

In the example above, the email field will only be validated if it is present in the $data array.

Validation 234

Complex Conditional Validation

Sometimes you may wish to add validation rules based on more complex conditional logic. For
example, you may wish to require a given field only if another field has a greater value than 100.
Or, you may need two fields to have a given value only when another field is present. Adding these
validation rules doesn’t have to be a pain. First, create a Validator instance with your static rules
that never change:

1 $v = Validator::make($data, [

2 'email' => 'required|email',

3 'games' => 'required|numeric',

4]);

Let’s assume our web application is for game collectors. If a game collector registers with our
application and they own more than 100 games, we want them to explain why they own so many
games. For example, perhaps they run a game resale shop, or maybe they just enjoy collecting. To
conditionally add this requirement, we can use the sometimes method on the Validator instance.

1 $v->sometimes('reason', 'required|max:500', function ($input) {

2 return $input->games >= 100;

3 });

The first argument passed to the sometimes method is the name of the field we are conditionally
validating. The second argument is the rules we want to add. If the Closure passed as the third
argument returns true, the rules will be added. This method makes it a breeze to build complex
conditional validations. You may even add conditional validations for several fields at once:

1 $v->sometimes(['reason', 'cost'], 'required', function ($input) {

2 return $input->games >= 100;

3 });

{tip} The $input parameter passed to your Closure will be an instance of Illumi-

nate\Support\Fluent and may be used to access your input and files.

Validation 235

Validating Arrays

Validating array based form input fields doesn’t have to be a pain. For example, to validate that each
e-mail in a given array input field is unique, you may do the following:

1 $validator = Validator::make($request->all(), [

2 'person.*.email' => 'email|unique:users',

3 'person.*.first_name' => 'required_with:person.*.last_name',

4]);

Likewise, you may use the * character when specifying your validation messages in your language
files, making it a breeze to use a single validation message for array based fields:

1 'custom' => [

2 'person.*.email' => [

3 'unique' => 'Each person must have a unique e-mail address',

4]

5],

Custom Validation Rules

Laravel provides a variety of helpful validation rules; however, you may wish to specify some of
your own. One method of registering custom validation rules is using the extend method on the
Validator facade. Let’s use this method within a service provider to register a custom validation
rule:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\ServiceProvider;

6 use Illuminate\Support\Facades\Validator;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Bootstrap any application services.

Validation 236

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 Validator::extend('foo', function ($attribute, $value, $parameters, $val\

18 idator) {

19 return $value == 'foo';

20 });

21 }

22

23 /**

24 * Register the service provider.

25 *

26 * @return void

27 */

28 public function register()

29 {

30 //

31 }

32 }

The custom validator Closure receives four arguments: the name of the $attribute being validated,
the $value of the attribute, an array of $parameters passed to the rule, and the Validator instance.

You may also pass a class and method to the extend method instead of a Closure:

1 Validator::extend('foo', 'FooValidator@validate');

Defining The Error Message

You will also need to define an error message for your custom rule. You can do so either using
an inline custom message array or by adding an entry in the validation language file. This message
should be placed in the first level of the array, not within the custom array, which is only for attribute-
specific error messages:

1 "foo" => "Your input was invalid!",

2

3 "accepted" => "The :attribute must be accepted.",

Validation 237

4

5 // The rest of the validation error messages...

When creating a custom validation rule, you may sometimes need to define custom place-holder
replacements for error messages. You may do so by creating a custom Validator as described above
then making a call to the replacer method on the Validator facade. You may do this within the
boot method of a service provider:

1 /**

2 * Bootstrap any application services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 Validator::extend(...);

9

10 Validator::replacer('foo', function ($message, $attribute, $rule, $parameter\

11 s) {

12 return str_replace(...);

13 });

14 }

Implicit Extensions

By default, when an attribute being validated is not present or contains an empty value as defined by
the required rule, normal validation rules, including custom extensions, are not run. For example,
the unique rule will not be run against a null value:

1 $rules = ['name' => 'unique'];

2

3 $input = ['name' => null];

4

5 Validator::make($input, $rules)->passes(); // true

For a rule to run even when an attribute is empty, the rule must imply that the attribute is required.
To create such an “implicit” extension, use the Validator::extendImplicit() method:

Validation 238

1 Validator::extendImplicit('foo', function ($attribute, $value, $parameters, $val\

2 idator) {

3 return $value == 'foo';

4 });

{note} An “implicit” extension only implies that the attribute is required. Whether it
actually invalidates a missing or empty attribute is up to you.

Views
• Creating Views
• Passing Data To Views A> - Sharing Data With All Views
• View Composers

Creating Views

Views contain the HTML served by your application and separate your controller / application logic
from your presentation logic. Views are stored in the resources/views directory. A simple view
might look something like this:

1 <!-- View stored in resources/views/greeting.blade.php -->

2

3 <html>

4 <body>

5 <h1>Hello, {{ $name }}</h1>

6 </body>

7 </html>

Since this view is stored at resources/views/greeting.blade.php, we may return it using the
global view helper like so:

1 Route::get('/', function () {

2 return view('greeting', ['name' => 'James']);

3 });

As you can see, the first argument passed to the view helper corresponds to the name of the view
file in the resources/views directory. The second argument is an array of data that should be made
available to the view. In this case, we are passing the name variable, which is displayed in the view
using Blade syntax.

Of course, views may also be nested within sub-directories of the resources/views directory.
“Dot” notation may be used to reference nested views. For example, if your view is stored at
resources/views/admin/profile.blade.php, you may reference it like so:

Views 240

1 return view('admin.profile', $data);

Determining If A View Exists

If you need to determine if a view exists, you may use the View facade. The exists method will
return true if the view exists:

1 use Illuminate\Support\Facades\View;

2

3 if (View::exists('emails.customer')) {

4 //

5 }

Passing Data To Views

As you saw in the previous examples, you may pass an array of data to views:

1 return view('greetings', ['name' => 'Victoria']);

When passing information in this manner, $data should be an array with key/value pairs. Inside
your view, you can then access each value using its corresponding key, such as <?php echo $key;

?>. As an alternative to passing a complete array of data to the view helper function, you may use
the with method to add individual pieces of data to the view:

1 return view('greeting')->with('name', 'Victoria');

Sharing Data With All Views

Occasionally, you may need to share a piece of data with all views that are rendered by your
application. Youmay do so using the view facade’s sharemethod. Typically, you should place calls to
sharewithin a service provider’s bootmethod. You are free to add them to the AppServiceProvider
or generate a separate service provider to house them:

Views 241

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\View;

6

7 class AppServiceProvider extends ServiceProvider

8 {

9 /**

10 * Bootstrap any application services.

11 *

12 * @return void

13 */

14 public function boot()

15 {

16 View::share('key', 'value');

17 }

18

19 /**

20 * Register the service provider.

21 *

22 * @return void

23 */

24 public function register()

25 {

26 //

27 }

28 }

View Composers

View composers are callbacks or class methods that are called when a view is rendered. If you have
data that you want to be bound to a view each time that view is rendered, a view composer can help
you organize that logic into a single location.

For this example, let’s register the view composers within a service provider. We’ll use the View

facade to access the underlying Illuminate\Contracts\View\Factory contract implementation.
Remember, Laravel does not include a default directory for view composers. You are free to organize
them however you wish. For example, you could create an App\Http\ViewComposers directory:

Views 242

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\View;

6 use Illuminate\Support\ServiceProvider;

7

8 class ComposerServiceProvider extends ServiceProvider

9 {

10 /**

11 * Register bindings in the container.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 // Using class based composers...

18 View::composer(

19 'profile', 'App\Http\ViewComposers\ProfileComposer'

20);

21

22 // Using Closure based composers...

23 View::composer('dashboard', function ($view) {

24 //

25 });

26 }

27

28 /**

29 * Register the service provider.

30 *

31 * @return void

32 */

33 public function register()

34 {

35 //

36 }

37 }

{note} Remember, if you create a new service provider to contain your view composer
registrations, you will need to add the service provider to the providers array in the
config/app.php configuration file.

Views 243

Now that we have registered the composer, the ProfileComposer@composemethod will be executed
each time the profile view is being rendered. So, let’s define the composer class:

1 <?php

2

3 namespace App\Http\ViewComposers;

4

5 use Illuminate\View\View;

6 use App\Repositories\UserRepository;

7

8 class ProfileComposer

9 {

10 /**

11 * The user repository implementation.

12 *

13 * @var UserRepository

14 */

15 protected $users;

16

17 /**

18 * Create a new profile composer.

19 *

20 * @param UserRepository $users

21 * @return void

22 */

23 public function __construct(UserRepository $users)

24 {

25 // Dependencies automatically resolved by service container...

26 $this->users = $users;

27 }

28

29 /**

30 * Bind data to the view.

31 *

32 * @param View $view

33 * @return void

34 */

35 public function compose(View $view)

36 {

37 $view->with('count', $this->users->count());

38 }

39 }

Views 244

Just before the view is rendered, the composer’s compose method is called with the Illumi-

nate\View\View instance. You may use the with method to bind data to the view.

{tip} All view composers are resolved via the service container, so you may type-hint
any dependencies you need within a composer’s constructor.

Attaching A Composer To Multiple Views

You may attach a view composer to multiple views at once by passing an array of views as the first
argument to the composer method:

1 View::composer(

2 ['profile', 'dashboard'],

3 'App\Http\ViewComposers\MyViewComposer'

4);

The composermethod also accepts the * character as a wildcard, allowing you to attach a composer
to all views:

1 View::composer('*', function ($view) {

2 //

3 });

View Creators

View creators are very similar to view composers; however, they are executed immediately after the
view is instantiated instead of waiting until the view is about to render. To register a view creator,
use the creator method:

1 View::creator('profile', 'App\Http\ViewCreators\ProfileCreator');

Blade Templates
• Introduction
• Template Inheritance A> - Defining A Layout A> - Extending A Layout
• Displaying Data A> - Blade & JavaScript Frameworks
• Control Structures A> - If Statements A> - Loops A> - The Loop Variable A> - Comments A>
- PHP

• Including Sub-Views A> - Rendering Views For Collections
• Stacks
• Service Injection
• Extending Blade

Introduction

Blade is the simple, yet powerful templating engine provided with Laravel. Unlike other popular
PHP templating engines, Blade does not restrict you from using plain PHP code in your views. In
fact, all Blade views are compiled into plain PHP code and cached until they are modified, meaning
Blade adds essentially zero overhead to your application. Blade view files use the .blade.php file
extension and are typically stored in the resources/views directory.

Template Inheritance

Defining A Layout

Two of the primary benefits of using Blade are template inheritance and sections. To get started,
let’s take a look at a simple example. First, we will examine a “master” page layout. Since most web
applications maintain the same general layout across various pages, it’s convenient to define this
layout as a single Blade view:

1 <!-- Stored in resources/views/layouts/app.blade.php -->

2

3 <html>

4 <head>

5 <title>App Name - @yield('title')</title>

6 </head>

7 <body>

8 @section('sidebar')

Blade Templates 246

9 This is the master sidebar.

10 @show

11

12 <div class="container">

13 @yield('content')

14 </div>

15 </body>

16 </html>

As you can see, this file contains typical HTML mark-up. However, take note of the @section and
@yield directives. The @section directive, as the name implies, defines a section of content, while
the @yield directive is used to display the contents of a given section.

Now that we have defined a layout for our application, let’s define a child page that inherits the
layout.

Extending A Layout

When defining a child view, use the Blade @extends directive to specify which layout the child view
should “inherit”. Views which extend a Blade layout may inject content into the layout’s sections
using @section directives. Remember, as seen in the example above, the contents of these sections
will be displayed in the layout using @yield:

1 <!-- Stored in resources/views/child.blade.php -->

2

3 @extends('layouts.app')

4

5 @section('title', 'Page Title')

6

7 @section('sidebar')

8 @@parent

9

10 <p>This is appended to the master sidebar.</p>

11 @endsection

12

13 @section('content')

14 <p>This is my body content.</p>

15 @endsection

In this example, the sidebar section is utilizing the @@parent directive to append (rather than

Blade Templates 247

overwriting) content to the layout’s sidebar. The @@parent directive will be replaced by the content
of the layout when the view is rendered.

Blade views may be returned from routes using the global view helper:

1 Route::get('blade', function () {

2 return view('child');

3 });

Displaying Data

You may display data passed to your Blade views by wrapping the variable in curly braces. For
example, given the following route:

1 Route::get('greeting', function () {

2 return view('welcome', ['name' => 'Samantha']);

3 });

You may display the contents of the name variable like so:

1 Hello, {{ $name }}.

Of course, you are not limited to displaying the contents of the variables passed to the view. You
may also echo the results of any PHP function. In fact, you can put any PHP code you wish inside
of a Blade echo statement:

1 The current UNIX timestamp is {{ time() }}.

{note} Blade {{ }} statements are automatically sent through PHP’s htmlentities

function to prevent XSS attacks.

Echoing Data If It Exists

Sometimes you may wish to echo a variable, but you aren’t sure if the variable has been set. We can
express this in verbose PHP code like so:

Blade Templates 248

1 {{ isset($name) ? $name : 'Default' }}

However, instead of writing a ternary statement, Blade provides you with the following convenient
short-cut, which will be compiled to the ternary statement above:

1 {{ $name or 'Default' }}

In this example, if the $name variable exists, its value will be displayed. However, if it does not exist,
the word Default will be displayed.

Displaying Unescaped Data

By default, Blade {{ }} statements are automatically sent through PHP’s htmlentities function to
prevent XSS attacks. If you do not want your data to be escaped, you may use the following syntax:

1 Hello, {!! $name !!}.

{note} Be very careful when echoing content that is supplied by users of your application.
Always use the escaped, double curly brace syntax to prevent XSS attacks when
displaying user supplied data.

Blade & JavaScript Frameworks

Since many JavaScript frameworks also use “curly” braces to indicate a given expression should
be displayed in the browser, you may use the @ symbol to inform the Blade rendering engine an
expression should remain untouched. For example:

1 <h1>Laravel</h1>

2

3 Hello, @{{ name }}.

In this example, the @ symbol will be removed by Blade; however, {{ name }} expression will remain
untouched by the Blade engine, allowing it to instead be rendered by your JavaScript framework.

Blade Templates 249

The @verbatim Directive

If you are displaying JavaScript variables in a large portion of your template, you may wrap the
HTML in the @verbatim directive so that you do not have to prefix each Blade echo statement with
an @ symbol:

1 @verbatim

2 <div class="container">

3 Hello, {{ name }}.

4 </div>

5 @endverbatim

Control Structures

In addition to template inheritance and displaying data, Blade also provides convenient short-cuts for
common PHP control structures, such as conditional statements and loops. These short-cuts provide
a very clean, terse way of working with PHP control structures, while also remaining familiar to
their PHP counterparts.

If Statements

You may construct if statements using the @if, @elseif, @else, and @endif directives. These
directives function identically to their PHP counterparts:

1 @if (count($records) === 1)

2 I have one record!

3 @elseif (count($records) > 1)

4 I have multiple records!

5 @else

6 I don't have any records!

7 @endif

For convenience, Blade also provides an @unless directive:

1 @unless (Auth::check())

2 You are not signed in.

Blade Templates 250

3 @endunless

Loops

In addition to conditional statements, Blade provides simple directives for working with PHP’s loop
structures. Again, each of these directives functions identically to their PHP counterparts:

1 @for ($i = 0; $i < 10; $i++)

2 The current value is {{ $i }}

3 @endfor

4

5 @foreach ($users as $user)

6 <p>This is user {{ $user->id }}</p>

7 @endforeach

8

9 @forelse ($users as $user)

10 {{ $user->name }}

11 @empty

12 <p>No users</p>

13 @endforelse

14

15 @while (true)

16 <p>I'm looping forever.</p>

17 @endwhile

{tip} When looping, you may use the loop variable to gain valuable information about
the loop, such as whether you are in the first or last iteration through the loop.

When using loops you may also end the loop or skip the current iteration:

1 @foreach ($users as $user)

2 @if ($user->type == 1)

3 @continue

4 @endif

5

6 {{ $user->name }}

7

8 @if ($user->number == 5)

Blade Templates 251

9 @break

10 @endif

11 @endforeach

You may also include the condition with the directive declaration in one line:

1 @foreach ($users as $user)

2 @continue($user->type == 1)

3

4 {{ $user->name }}

5

6 @break($user->number == 5)

7 @endforeach

The Loop Variable

When looping, a $loop variable will be available inside of your loop. This variable provides access
to some useful bits of information such as the current loop index and whether this is the first or last
iteration through the loop:

1 @foreach ($users as $user)

2 @if ($loop->first)

3 This is the first iteration.

4 @endif

5

6 @if ($loop->last)

7 This is the last iteration.

8 @endif

9

10 <p>This is user {{ $user->id }}</p>

11 @endforeach

If you are in a nested loop, you may access the parent loop’s $loop variable via the parent property:

Blade Templates 252

1 @foreach ($users as $user)

2 @foreach ($user->posts as $post)

3 @if ($loop->parent->first)

4 This is first iteration of the parent loop.

5 @endif

6 @endforeach

7 @endforeach

The $loop variable also contains a variety of other useful properties:

Property | Description ————- | ————- $loop->index | The index of the current loop iteration
(starts at 0). $loop->iteration | The current loop iteration (starts at 1). $loop->remaining | The
iteration remaining in the loop. $loop->count | The total number of items in the array being iterated.
$loop->first | Whether this is the first iteration through the loop. $loop->last | Whether this is the
last iteration through the loop. $loop->depth | The nesting level of the current loop. $loop->parent
| When in a nested loop, the parent’s loop variable.

Comments

Blade also allows you to define comments in your views. However, unlike HTML comments, Blade
comments are not included in the HTML returned by your application:

1 {{-- This comment will not be present in the rendered HTML --}}

PHP

In some situations, it’s useful to embed PHP code into your views. You can use the Blade @php

directive to execute a block of plain PHP within your template:

1 @php

2 //

3 @endphp

{tip} While Blade provides this feature, using it frequently may be a signal that you have
too much logic embedded within your template.

Blade Templates 253

Including Sub-Views

Blade’s @include directive allows you to include a Blade view from within another view. All
variables that are available to the parent view will be made available to the included view:

1 <div>

2 @include('shared.errors')

3

4 <form>

5 <!-- Form Contents -->

6 </form>

7 </div>

Even though the included view will inherit all data available in the parent view, you may also pass
an array of extra data to the included view:

1 @include('view.name', ['some' => 'data'])

Of course, if you attempt to @include a view which does not exist, Laravel will throw an error. If
you would like to include a view that may or may not be present, you should use the @includeIf
directive:

1 @includeIf('view.name', ['some' => 'data'])

{note} You should avoid using the __DIR__ and __FILE__ constants in your Blade views,
since they will refer to the location of the cached, compiled view.

Rendering Views For Collections

You may combine loops and includes into one line with Blade’s @each directive:

1 @each('view.name', $jobs, 'job')

Blade Templates 254

The first argument is the view partial to render for each element in the array or collection. The
second argument is the array or collection you wish to iterate over, while the third argument is the
variable name that will be assigned to the current iteration within the view. So, for example, if you
are iterating over an array of jobs, typically you will want to access each job as a job variable within
your view partial. The key for the current iteration will be available as the key variable within your
view partial.

You may also pass a fourth argument to the @each directive. This argument determines the view
that will be rendered if the given array is empty.

1 @each('view.name', $jobs, 'job', 'view.empty')

Stacks

Blade allows you to push to named stacks which can be rendered somewhere else in another view
or layout. This can be particularly useful for specifying any JavaScript libraries required by your
child views:

1 @push('scripts')

2 <script src="/example.js"></script>

3 @endpush

You may push to a stack as many times as needed. To render the complete stack contents, pass the
name of the stack to the @stack directive:

1 <head>

2 <!-- Head Contents -->

3

4 @stack('scripts')

5 </head>

Service Injection

The @inject directive may be used to retrieve a service from the Laravel service container. The first
argument passed to @inject is the name of the variable the service will be placed into, while the
second argument is the class or interface name of the service you wish to resolve:

Blade Templates 255

1 @inject('metrics', 'App\Services\MetricsService')

2

3 <div>

4 Monthly Revenue: {{ $metrics->monthlyRevenue() }}.

5 </div>

Extending Blade

Blade allows you to define your own custom directives using the directivemethod.When the Blade
compiler encounters the custom directive, it will call the provided callback with the expression that
the directive contains.

The following example creates a @datetime($var) directive which formats a given $var, which
should be an instance of DateTime:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\Blade;

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Perform post-registration booting of services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 Blade::directive('datetime', function ($expression) {

18 return "<?php echo $expression->format('m/d/Y H:i'); ?>";

19 });

20 }

21

22 /**

23 * Register bindings in the container.

24 *

25 * @return void

Blade Templates 256

26 */

27 public function register()

28 {

29 //

30 }

31 }

As you can see, we will chain the format method onto whatever expression is passed into the
directive. So, in this example, the final PHP generated by this directive will be:

1 <?php echo $var->format('m/d/Y H:i'); ?>

{note} After updating the logic of a Blade directive, you will need to delete all of the
cached Blade views. The cached Blade views may be removed using the view:clear

Artisan command.

Localization
• Introduction
• Retrieving Language Lines A> - Replacing Parameters In Language Lines A> - Pluralization
• Overriding Package Language Files

Introduction

Laravel’s localization features provide a convenient way to retrieve strings in various languages,
allowing you to easily support multiple languages within your application. Language strings are
stored in files within the resources/lang directory. Within this directory there should be a
subdirectory for each language supported by the application:

1 /resources

2 /lang

3 /en

4 messages.php

5 /es

6 messages.php

All language files simply return an array of keyed strings. For example:

1 <?php

2

3 return [

4 'welcome' => 'Welcome to our application'

5];

Configuring The Locale

The default language for your application is stored in the config/app.php configuration file. Of
course, you may modify this value to suit the needs of your application. You may also change the
active language at runtime using the setLocale method on the App facade:

Localization 258

1 Route::get('welcome/{locale}', function ($locale) {

2 App::setLocale($locale);

3

4 //

5 });

You may configure a “fallback language”, which will be used when the active language does not
contain a given language line. Like the default language, the fallback language is also configured in
the config/app.php configuration file:

1 'fallback_locale' => 'en',

Determining The Current Locale

You may use the getLocale and isLocalemethods on the App facade to determine the current locale
or check if the locale is a given value:

1 $locale = App::getLocale();

2

3 if (App::isLocale('en')) {

4 //

5 }

Retrieving Language Lines

You may retrieve lines from language files using the trans helper function. The trans method
accepts the file and key of the language line as its first argument. For example, let’s retrieve the
welcome language line from the resources/lang/messages.php language file:

1 echo trans('messages.welcome');

Of course if you are using the Blade templating engine, you may use the {{ }} syntax to echo the
language line or use the @lang directive:

Localization 259

1 {{ trans('messages.welcome') }}

2

3 @lang('messages.welcome')

If the specified language line does not exist, the trans function will simply return the language
line key. So, using the example above, the trans function would return messages.welcome if the
language line does not exist.

Replacing Parameters In Language Lines

If you wish, you may define place-holders in your language lines. All place-holders are prefixed
with a :. For example, you may define a welcome message with a place-holder name:

1 'welcome' => 'Welcome, :name',

To replace the place-holders when retrieving a language line, pass an array of replacements as the
second argument to the trans function:

1 echo trans('messages.welcome', ['name' => 'dayle']);

If your place-holder contains all capital letters, or only has its first letter capitalized, the translated
value will be capitalized accordingly:

1 'welcome' => 'Welcome, :NAME', // Welcome, DAYLE

2 'goodbye' => 'Goodbye, :Name', // Goodbye, Dayle

Pluralization

Pluralization is a complex problem, as different languages have a variety of complex rules for
pluralization. By using a “pipe” character, you may distinguish singular and plural forms of a string:

Localization 260

1 'apples' => 'There is one apple|There are many apples',

After defining a language line that has pluralization options, youmay use the trans_choice function
to retrieve the line for a given “count”. In this example, since the count is greater than one, the plural
form of the language line is returned:

1 echo trans_choice('messages.apples', 10);

Since the Laravel translator is powered by the Symfony Translation component, you may create
even more complex pluralization rules which specify language lines for multiple number ranges:

1 'apples' => '{0} There are none|[1,19] There are some|[20,Inf] There are many',

Overriding Package Language Files

Some packages may ship with their own language files. Instead of changing the package’s core
files to tweak these lines, you may override them by placing files in the resources/lang/ven-

dor/{package}/{locale} directory.

So, for example, if you need to override the English language lines in messages.php for a package
named skyrim/hearthfire, you should place a language file at: resources/lang/vendor/hearth-
fire/en/messages.php. Within this file, you should only define the language lines you wish to
override. Any language lines you don’t override will still be loaded from the package’s original
language files.

JavaScript & CSS
• Introduction
• Writing CSS
• Writing JavaScript A> - Writing Vue Components

Introduction

While Laravel does not dictate which JavaScript or CSS pre-processors you use, it does provide a
basic starting point using Bootstrap¹⁸⁰ and Vue¹⁸¹ that will be helpful for many applications. By
default, Laravel uses NPM¹⁸² to install both of these frontend packages.

CSS

Laravel Elixir provides a clean, expressive API over compiling SASS or Less, which are extensions
of plain CSS that add variables, mixins, and other powerful features that make working with CSS
much more enjoyable.

In this document, we will briefly discuss CSS compilation in general; however, you should consult
the full Laravel Elixir documentation for more information on compiling SASS or Less.

JavaScript

Laravel does not require you to use a specific JavaScript framework or library to build your
applications. In fact, you don’t have to use JavaScript at all. However, Laravel does include some
basic scaffolding to make it easier to get started writing modern JavaScript using the Vue¹⁸³ library.
Vue provides an expressive API for building robust JavaScript applications using components.

Writing CSS

The Laravel package.json file includes the bootstrap-sass package to help you get started
prototyping your application’s frontend using Bootstrap. However, feel free to add or remove
packages from the package.json file as needed for your own application. You are not required
to use the Bootstrap framework to build your Laravel application - it is simply provided as a good
starting point for those who choose to use it.

Before compiling your CSS, install your project’s frontend dependencies using NPM:

¹⁸⁰https://getbootstrap.com/
¹⁸¹https://vuejs.org
¹⁸²https://www.npmjs.org
¹⁸³https://vuejs.org

https://getbootstrap.com/
https://vuejs.org/
https://www.npmjs.org/
https://vuejs.org/
https://getbootstrap.com/
https://vuejs.org/
https://www.npmjs.org/
https://vuejs.org/

JavaScript & CSS 262

1 npm install

Once the dependencies have been installed using npm install, you can compile your SASS files to
plain CSS using Gulp¹⁸⁴. The gulp command will process the instructions in your gulpfile.js file.
Typically, your compiled CSS will be placed in the public/css directory:

1 gulp

The default gulpfile.js included with Laravel will compile the resources/assets/sass/app.scss
SASS file. This app.scss file imports a file of SASS variables and loads Bootstrap, which provides
a good starting point for most applications. Feel free to customize the app.scss file however you
wish or even use an entirely different pre-processor by configuring Laravel Elixir.

Writing JavaScript

All of the JavaScript dependencies required by your application can be found in the package.json
file in the project’s root directory. This file is similar to a composer.json file except it specifies
JavaScript dependencies instead of PHP dependencies. You can install these dependencies using the
Node package manager (NPM)¹⁸⁵:

1 npm install

By default, the Laravel package.json file includes a few packages such as vue and vue-resource

to help you get started building your JavaScript application. Feel free to add or remove from the
package.json file as needed for your own application.

Once the packages are installed, you can use the gulp command to compile your assets. Gulp is a
command-line build system for JavaScript. When you run the gulp command, Gulp will execute the
instructions in your gulpfile.js file:

1 gulp

¹⁸⁴http://gulpjs.com/
¹⁸⁵https://www.npmjs.org

http://gulpjs.com/
https://www.npmjs.org/
http://gulpjs.com/
https://www.npmjs.org/

JavaScript & CSS 263

By default, the Laravel gulpfile.js file compiles your SASS and the resources/assets/js/app.js
file. Within the app.js file you may register your Vue components or, if you prefer a different
framework, configure your own JavaScript application. Your compiled JavaScript will typically be
placed in the public/js directory.

{tip} The app.js file will load the resources/assets/js/bootstrap.js file which boot-
straps and configures Vue, Vue Resource, jQuery, and all other JavaScript dependencies.
If you have additional JavaScript dependencies to configure, you may do so in this file.

Writing Vue Components

By default, fresh Laravel applications contain an Example.vue Vue component located in the
resources/assets/js/components directory. The Example.vue file is an example of a single file
Vue component¹⁸⁶ which defines its JavaScript and HTML template in the same file. Single file
components provide a very convenient approach to building JavaScript driven applications. The
example component is registered in your app.js file:

1 Vue.component('example', require('./components/Example.vue'));

To use the component in your application, you may simply drop it into one of your HTML
templates. For example, after running the make:authArtisan command to scaffold your application’s
authentication and registration screens, you could drop the component into the home.blade.php

Blade template:

1 @extends('layouts.app')

2

3 @section('content')

4 <example></example>

5 @endsection

{tip} Remember, you should run the gulp command each time you change a Vue
component. Or, you may run the gulp watch command to monitor and automatically
recompile your components each time they are modified.

Of course, if you are interested in learning more about writing Vue components, you should read
the Vue documentation¹⁸⁷, which provides a thorough, easy-to-read overview of the entire Vue
framework.

¹⁸⁶https://vuejs.org/guide/single-file-components
¹⁸⁷https://vuejs.org/guide/

https://vuejs.org/guide/single-file-components
https://vuejs.org/guide/single-file-components
https://vuejs.org/guide/
https://vuejs.org/guide/single-file-components
https://vuejs.org/guide/

Compiling Assets (Laravel Elixir)
• Introduction
• Installation & Setup
• Running Elixir
• Working With Stylesheets A> - Less A> - Sass A> - Stylus A> - Plain CSS A> - Source Maps
• Working With Scripts A> - Webpack A> - Rollup A> - Scripts
• Copying Files & Directories
• Versioning / Cache Busting
• BrowserSync

Introduction

Laravel Elixir provides a clean, fluent API for defining basic Gulp¹⁸⁸ tasks for your Laravel
application. Elixir supports common CSS and JavaScript pre-processors like Sass¹⁸⁹ and Webpack¹⁹⁰.
Using method chaining, Elixir allows you to fluently define your asset pipeline. For example:

1 elixir(function(mix) {

2 A> mix.sass('app.scss')

3 A> .webpack('app.js');

4

5 });

If you’ve ever been confused and overwhelmed about getting started with Gulp and asset compi-
lation, you will love Laravel Elixir. However, you are not required to use it while developing your
application. You are free to use any asset pipeline tool you wish, or even none at all.

Installation & Setup

Installing Node

Before triggering Elixir, you must first ensure that Node.js and NPM are installed on your machine.

¹⁸⁸http://gulpjs.com
¹⁸⁹http://sass-lang.com
¹⁹⁰https://webpack.github.io/

http://gulpjs.com/
http://sass-lang.com/
https://webpack.github.io/
http://gulpjs.com/
http://sass-lang.com/
https://webpack.github.io/

Compiling Assets (Laravel Elixir) 265

1 node -v

2 npm -v

By default, Laravel Homestead includes everything you need; however, if you aren’t using Vagrant,
then you can easily install the latest version of Node and NPM using simple graphical installers from
their download page¹⁹¹.

Gulp

Next, you’ll need to pull in Gulp¹⁹² as a global NPM package:

1 npm install --global gulp-cli

Laravel Elixir

The only remaining step is to install Laravel Elixir. Within a fresh installation of Laravel, you’ll find
a package.json file in the root of your directory structure. The default package.json file includes
Elixir and theWebpack JavaScript module bundler. Think of this like your composer.json file, except
it defines Node dependencies instead of PHP. You may install the dependencies it references by
running:

1 npm install

If you are developing on aWindows system or you are running your VM on aWindows host system,
you may need to run the npm install command with the --no-bin-links switch enabled:

1 npm install --no-bin-links

¹⁹¹https://nodejs.org/en/download/
¹⁹²http://gulpjs.com

https://nodejs.org/en/download/
http://gulpjs.com/
https://nodejs.org/en/download/
http://gulpjs.com/

Compiling Assets (Laravel Elixir) 266

Running Elixir

Elixir is built on top of Gulp¹⁹³, so to run your Elixir tasks you only need to run the gulp command
in your terminal. Adding the --production flag to the command will instruct Elixir to minify your
CSS and JavaScript files:

1 // Run all tasks...

2 gulp

3

4 // Run all tasks and minify all CSS and JavaScript...

5 gulp --production

Upon running this command, you’ll see a nicely formatted table that displays a summary of the
events that just took place.

Watching Assets For Changes

The gulp watch command will continue running in your terminal and watch your assets for
any changes. Gulp will automatically recompile your assets if you modify them while the watch

command is running:

1 gulp watch

Working With Stylesheets

The gulpfile.js file in your project’s root directory contains all of your Elixir tasks. Elixir tasks
can be chained together to define exactly how your assets should be compiled.

Less

The lessmethod may be used to compile Less¹⁹⁴ into CSS. The lessmethod assumes that your Less
files are stored in resources/assets/less. By default, the task will place the compiled CSS for this
example in public/css/app.css:

¹⁹³http://gulpjs.com
¹⁹⁴http://lesscss.org/

http://gulpjs.com/
http://lesscss.org/
http://gulpjs.com/
http://lesscss.org/

Compiling Assets (Laravel Elixir) 267

1 elixir(function(mix) {

2 A> mix.less('app.less');

3

4 });

You may also combine multiple Less files into a single CSS file. Again, the resulting CSS will be
placed in public/css/app.css:

1 elixir(function(mix) {

2 A> mix.less([

3 A> 'app.less',

4 A> 'controllers.less'

5 A>]);

6

7 });

If you wish to customize the output location of the compiled CSS, you may pass a second argument
to the less method:

1 elixir(function(mix) {

2 A> mix.less('app.less', 'public/stylesheets');

3

4 });

5

6 // Specifying a specific output filename...

7 elixir(function(mix) {

8 A> mix.less('app.less', 'public/stylesheets/style.css');

9

10 });

Sass

The sass method allows you to compile Sass¹⁹⁵ into CSS. Assuming your Sass files are stored at
resources/assets/sass, you may use the method like so:

¹⁹⁵http://sass-lang.com/

http://sass-lang.com/
http://sass-lang.com/

Compiling Assets (Laravel Elixir) 268

1 elixir(function(mix) {

2 A> mix.sass('app.scss');

3

4 });

Again, like the less method, you may compile multiple Sass files into a single CSS file, and even
customize the output directory of the resulting CSS:

1 elixir(function(mix) {

2 A> mix.sass([

3 A> 'app.scss',

4 A> 'controllers.scss'

5 A>], 'public/assets/css');

6

7 });

Custom Paths

While it’s recommended that you use Laravel’s default asset directories, if you require a different
base directory, you may begin any file path with ./. This instructs Elixir to begin at the project root,
rather than using the default base directory.

For example, to compile a file located at app/assets/sass/app.scss and output the results to
public/css/app.css, you would make the following call to the sass method:

1 elixir(function(mix) {

2 A> mix.sass('./app/assets/sass/app.scss');

3

4 });

Stylus

The stylus method may be used to compile Stylus¹⁹⁶ into CSS. Assuming that your Stylus files are
stored in resources/assets/stylus, you may call the method like so:

1 elixir(function(mix) {

2 A> mix.stylus('app.styl');

3

4 });

{tip} This method’s signature is identical to both mix.less() and mix.sass().

¹⁹⁶http://stylus-lang.com/

http://stylus-lang.com/
http://stylus-lang.com/

Compiling Assets (Laravel Elixir) 269

Plain CSS

If you would just like to combine some plain CSS stylesheets into a single file, you may use the
styles method. Paths passed to this method are relative to the resources/assets/css directory
and the resulting CSS will be placed in public/css/all.css:

1 elixir(function(mix) {

2 A> mix.styles([

3 A> 'normalize.css',

4 A> 'main.css'

5 A>]);

6

7 });

You may also instruct Elixir to write the resulting file to a custom directory or file by passing a
second argument to the styles method:

1 elixir(function(mix) {

2 A> mix.styles([

3 A> 'normalize.css',

4 A> 'main.css'

5 A>], 'public/assets/css/site.css');

6

7 });

Source Maps

In Elixir, source maps are enabled by default and provide better debugging information to your
browser’s developer tools when using compiled assets. For each relevant file that is compiled, you
will find a companion *.css.map or *.js.map file in the same directory.

If you do not want source maps generated for your application, you may disable them using the
sourcemaps configuration option:

1 elixir.config.sourcemaps = false;

2

3 elixir(function(mix) {

4 A> mix.sass('app.scss');

5

6 });

Compiling Assets (Laravel Elixir) 270

Working With Scripts

Elixir provides several features to help you work with your JavaScript files, such as compiling
ECMAScript 2015, module bundling, minification, and simply concatenating plain JavaScript files.

When writing ES2015 with modules, you have your choice between Webpack¹⁹⁷ and Rollup¹⁹⁸. If
these tools are foreign to you, don’t worry, Elixir will handle all of the hard work behind the scenes.
By default, the Laravel gulpfile uses webpack to compile Javascript, but you are free to use any
module bundler you like.

Webpack

The webpackmethod may be used to compile and bundle ECMAScript 2015¹⁹⁹ into plain JavaScript.
This function accepts a file path relative to the resources/assets/js directory and generates a
single bundled file in the public/js directory:

1 elixir(function(mix) {

2 A> mix.webpack('app.js');

3

4 });

To choose a different output or base directory, simply specify your desired paths with a leading ..
Then you may specify the paths relative to the root of your application. For example, to compile
app/assets/js/app.js to public/dist/app.js:

1 elixir(function(mix) {

2 A> mix.webpack(

3 A> './app/assets/js/app.js',

4 A> './public/dist'

5 A>);

6

7 });

If you’d like to leverage more of Webpack’s functionality, Elixir will read any webpack.config.js

file that is in your project root and factor its configuration²⁰⁰ into the build process.

Rollup

Similar to Webpack, Rollup is a next-generation bundler for ES2015. This function accepts an array
of files relative to the resources/assets/js directory, and generates a single file in the public/js
directory:

¹⁹⁷https://webpack.github.io
¹⁹⁸http://rollupjs.org/
¹⁹⁹https://babeljs.io/docs/learn-es2015/
²⁰⁰https://webpack.github.io/docs/configuration.html

https://webpack.github.io/
http://rollupjs.org/
https://babeljs.io/docs/learn-es2015/
https://webpack.github.io/docs/configuration.html
https://webpack.github.io/
http://rollupjs.org/
https://babeljs.io/docs/learn-es2015/
https://webpack.github.io/docs/configuration.html

Compiling Assets (Laravel Elixir) 271

1 elixir(function(mix) {

2 A> mix.rollup('app.js');

3

4 });

Like the webpack method, you may customize the location of the input and output files given to the
rollup method:

1 elixir(function(mix) {

2 mix.rollup(

3 './resources/assets/js/app.js',

4 './public/dist'

5);

6 });

Scripts

If you have multiple JavaScript files that you would like to combine into a single file, you may use
the scripts method, which provides automatic source maps, concatenation, and minification.

The scripts method assumes all paths are relative to the resources/assets/js directory, and will
place the resulting JavaScript in public/js/all.js by default:

1 elixir(function(mix) {

2 A> mix.scripts([

3 A> 'order.js',

4 A> 'forum.js'

5 A>]);

6

7 });

If you need to concatenate multiple sets of scripts into different files, you may make multiple calls to
the scripts method. The second argument given to the method determines the resulting file name
for each concatenation:

Compiling Assets (Laravel Elixir) 272

1 elixir(function(mix) {

2 A> mix.scripts(['app.js', 'controllers.js'], 'public/js/app.js')

3 A> .scripts(['forum.js', 'threads.js'], 'public/js/forum.js');

4

5 });

If you need to combine all of the scripts in a given directory, you may use the scriptsIn method.
The resulting JavaScript will be placed in public/js/all.js:

1 elixir(function(mix) {

2 A> mix.scriptsIn('public/js/some/directory');

3

4 });

{tip} If you intend to concatenate multiple pre-minified vendor libraries, such as jQuery,
instead consider using mix.combine(). This will combine the files, while omitting the
source map and minification steps. As a result, compile times will drastically improve.

Copying Files & Directories

The copy method may be used to copy files and directories to new locations. All operations are
relative to the project’s root directory:

1 elixir(function(mix) {

2 A> mix.copy('vendor/foo/bar.css', 'public/css/bar.css');

3

4 });

Versioning / Cache Busting

Many developers suffix their compiled assets with a timestamp or unique token to force browsers to
load the fresh assets instead of serving stale copies of the code. Elixir can handle this for you using
the version method.

The version method accepts a file name relative to the public directory, and will append a unique
hash to the filename, allowing for cache-busting. For example, the generated file name will look
something like: all-16d570a7.css:

Compiling Assets (Laravel Elixir) 273

1 elixir(function(mix) {

2 A> mix.version('css/all.css');

3

4 });

After generating the versioned file, you may use Laravel’s global elixir helper within your views to
load the appropriately hashed asset. The elixir function will automatically determine the current
name of the hashed file:

1 <link rel="stylesheet" href="{{ elixir('css/all.css') }}">

Versioning Multiple Files

You may pass an array to the version method to version multiple files:

1 elixir(function(mix) {

2 A> mix.version(['css/all.css', 'js/app.js']);

3

4 });

Once the files have been versioned, you may use the elixir helper function to generate links to the
proper hashed files. Remember, you only need to pass the name of the un-hashed file to the elixir
helper function. The helper will use the un-hashed name to determine the current hashed version
of the file:

1 <link rel="stylesheet" href="{{ elixir('css/all.css') }}">

2

3 <script src="{{ elixir('js/app.js') }}"></script>

BrowserSync

BrowserSync automatically refreshes your web browser after you make changes to your assets. The
browserSyncmethod accepts a JavaScript object with a proxy attribute containing the local URL for
your application. Then, once you run gulp watch you may access your web application using port
3000 (http://project.dev:3000) to enjoy browser syncing:

Compiling Assets (Laravel Elixir) 274

1 elixir(function(mix) {

2 A> mix.browserSync({

3 A> proxy: 'project.dev'

4 A> });

5

6 });

Authentication
• Introduction A> - Database Considerations
• Authentication Quickstart A> - Routing A> - Views A> - Authenticating A> - Retrieving The
Authenticated User A> - Protecting Routes A> - Login Throttling

• Manually Authenticating Users A> - Remembering Users A> - Other Authentication Methods
• HTTP Basic Authentication A> - Stateless HTTP Basic Authentication
• Social Authentication²⁰¹
• Adding Custom Guards
• Adding Custom User Providers A> - The User Provider Contract A> - The Authenticatable
Contract

• Events

Introduction

{tip} Want to get started fast? Just run php artisan make:auth and php artisan

migrate in a fresh Laravel application. Then, navigate your browser to http://your-

app.dev/register or any other URL that is assigned to your application. These two
commands will take care of scaffolding your entire authentication system!

Laravel makes implementing authentication very simple. In fact, almost everything is configured
for you out of the box. The authentication configuration file is located at config/auth.php, which
contains several well documented options for tweaking the behavior of the authentication services.

At its core, Laravel’s authentication facilities are made up of “guards” and “providers”. Guards define
how users are authenticated for each request. For example, Laravel ships with a session guardwhich
maintains state using session storage and cookies.

Providers define how users are retrieved from your persistent storage. Laravel ships with support
for retrieving users using Eloquent and the database query builder. However, you are free to define
additional providers as needed for your application.

Don’t worry if this all sounds confusing now! Many applications will never need to modify the
default authentication configuration.

²⁰¹https://github.com/laravel/socialite

https://github.com/laravel/socialite
https://github.com/laravel/socialite

Authentication 276

Database Considerations

By default, Laravel includes an App\User Eloquent model in your app directory. This model may be
used with the default Eloquent authentication driver. If your application is not using Eloquent, you
may use the database authentication driver which uses the Laravel query builder.

When building the database schema for the App\User model, make sure the password column is at
least 60 characters in length. Maintaining the default string column length of 255 characters would
be a good choice.

Also, you should verify that your users (or equivalent) table contains a nullable, string remember_-
token column of 100 characters. This column will be used to store a token for users that select the
“remember me” option when logging into your application.

Authentication Quickstart

Laravel shipswith several pre-built authentication controllers, which are located in the App\Http\Controllers\Auth
namespace. The RegisterController handles new user registration, the LoginController handles
authentication, the ForgotPasswordController handles e-mailing links for resetting passwords, and
the ResetPasswordController contains the logic to reset passwords. Each of these controllers uses
a trait to include their necessary methods. For many applications, you will not need to modify these
controllers at all.

Routing

Laravel provides a quick way to scaffold all of the routes and views you need for authentication
using one simple command:

1 php artisan make:auth

This command should be used on fresh applications and will install a layout view, registration
and login views, as well as routes for all authentication end-points. A HomeController will also
be generated to handle post-login requests to your application’s dashboard.

Views

As mentioned in the previous section, the php artisan make:auth command will create all of the
views you need for authentication and place them in the resources/views/auth directory.

The make:auth command will also create a resources/views/layouts directory containing a base
layout for your application. All of these views use the Bootstrap CSS framework, but you are free
to customize them however you wish.

Authentication 277

Authenticating

Now that you have routes and views setup for the included authentication controllers, you are
ready to register and authenticate new users for your application! You may simply access your
application in a browser since the authentication controllers already contain the logic (via their
traits) to authenticate existing users and store new users in the database.

Path Customization

When a user is successfully authenticated, they will be redirected to the /home URI. You can
customize the post-authentication redirect location by defining a redirectTo property on the
LoginController, RegisterController, and ResetPasswordController:

1 protected $redirectTo = '/';

When a user is not successfully authenticated, they will be automatically redirected back to the login
form.

Username Customization

By default, Laravel uses the email field for authentication. If you would like to customize this, you
may define a username method on your LoginController:

1 public function username()

2 {

3 return 'username';

4 }

Guard Customization

You may also customize the “guard” that is used to authenticate and register users. To get started,
define a guard method on your LoginController, RegisterController, and ResetPasswordCon-

troller. The method should return a guard instance:

1 use Illuminate\Support\Facades\Auth;

2

3 protected function guard()

4 {

Authentication 278

5 return Auth::guard('guard-name');

6 }

Validation / Storage Customization

To modify the form fields that are required when a new user registers with your application, or to
customize how new users are stored into your database, you may modify the RegisterController
class. This class is responsible for validating and creating new users of your application.

The validator method of the RegisterController contains the validation rules for new users of
the application. You are free to modify this method as you wish.

The createmethod of the RegisterController is responsible for creating new App\User records in
your database using the Eloquent ORM. You are free to modify this method according to the needs
of your database.

Retrieving The Authenticated User

You may access the authenticated user via the Auth facade:

1 use Illuminate\Support\Facades\Auth;

2

3 // Get the currently authenticated user...

4 $user = Auth::user();

5

6 // Get the currently authenticated user's ID...

7 $id = Auth::id();

Alternatively, once a user is authenticated, you may access the authenticated user via an Illu-

minate\Http\Request instance. Remember, type-hinted classes will automatically be injected into
your controller methods:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6

7 class ProfileController extends Controller

Authentication 279

8 {

9 /**

10 * Update the user's profile.

11 *

12 * @param Request $request

13 * @return Response

14 */

15 public function update(Request $request)

16 {

17 // $request->user() returns an instance of the authenticated user...

18 }

19 }

Determining If The Current User Is Authenticated

To determine if the user is already logged into your application, you may use the check method on
the Auth facade, which will return true if the user is authenticated:

1 use Illuminate\Support\Facades\Auth;

2

3 if (Auth::check()) {

4 // The user is logged in...

5 }

{tip} Even though it is possible to determine if a user is authenticated using the check
method, you will typically use a middleware to verify that the user is authenticated
before allowing the user access to certain routes / controllers. To learn more about this,
check out the documentation on protecting routes.

Protecting Routes

Route middleware can be used to only allow authenticated users to access a given route. Laravel
ships with an auth middleware, which is defined at Illuminate\Auth\Middleware\Authenticate.
Since this middleware is already registered in your HTTP kernel, all you need to do is attach the
middleware to a route definition:

Authentication 280

1 Route::get('profile', function () {

2 // Only authenticated users may enter...

3 })->middleware('auth');

Of course, if you are using controllers, you may call the middleware method from the controller’s
constructor instead of attaching it in the route definition directly:

1 public function __construct()

2 {

3 $this->middleware('auth');

4 }

Specifying A Guard

When attaching the auth middleware to a route, you may also specify which guard should be used
to authenticate the user. The guard specified should correspond to one of the keys in the guards

array of your auth.php configuration file:

1 public function __construct()

2 {

3 $this->middleware('auth:api');

4 }

Login Throttling

If you are using Laravel’s built-in LoginController class, the Illuminate\Foundation\Auth\ThrottlesLogins
trait will already be included in your controller. By default, the user will not be able to login for one
minute if they fail to provide the correct credentials after several attempts. The throttling is unique
to the user’s username / e-mail address and their IP address.

Manually Authenticating Users

Of course, you are not required to use the authentication controllers included with Laravel. If you
choose to remove these controllers, you will need to manage user authentication using the Laravel
authentication classes directly. Don’t worry, it’s a cinch!

Authentication 281

We will access Laravel’s authentication services via the Auth facade, so we’ll need to make sure to
import the Auth facade at the top of the class. Next, let’s check out the attempt method:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\Auth;

6

7 class LoginController extends Controller

8 {

9 /**

10 * Handle an authentication attempt.

11 *

12 * @return Response

13 */

14 public function authenticate()

15 {

16 if (Auth::attempt(['email' => $email, 'password' => $password])) {

17 // Authentication passed...

18 return redirect()->intended('dashboard');

19 }

20 }

21 }

The attempt method accepts an array of key / value pairs as its first argument. The values in the
array will be used to find the user in your database table. So, in the example above, the user will be
retrieved by the value of the email column. If the user is found, the hashed password stored in the
database will be compared with the hashed password value passed to the method via the array. If
the two hashed passwords match an authenticated session will be started for the user.

The attempt method will return true if authentication was successful. Otherwise, false will be
returned.

The intended method on the redirector will redirect the user to the URL they were attempting to
access before being intercepted by the authentication middleware. A fallback URI may be given to
this method in case the intended destination is not available.

Specifying Additional Conditions

If you wish, you also may add extra conditions to the authentication query in addition to the user’s
e-mail and password. For example, we may verify that user is marked as “active”:

Authentication 282

1 if (Auth::attempt(['email' => $email, 'password' => $password, 'active' => 1])) {

2 // The user is active, not suspended, and exists.

3 }

{note} In these examples, email is not a required option, it is merely used as an example.
You should use whatever column name corresponds to a “username” in your database.

Accessing Specific Guard Instances

You may specify which guard instance you would like to utilize using the guard method on the
Auth facade. This allows you to manage authentication for separate parts of your application using
entirely separate authenticatable models or user tables.

The guard name passed to the guard method should correspond to one of the guards configured in
your auth.php configuration file:

1 if (Auth::guard('admin')->attempt($credentials)) {

2 //

3 }

Logging Out

To log users out of your application, you may use the logout method on the Auth facade. This will
clear the authentication information in the user’s session:

1 Auth::logout();

Remembering Users

If you would like to provide “remember me” functionality in your application, you may pass a
boolean value as the second argument to the attemptmethod, whichwill keep the user authenticated
indefinitely, or until they manually logout. Of course, your users table must include the string
remember_token column, which will be used to store the “remember me” token.

Authentication 283

1 if (Auth::attempt(['email' => $email, 'password' => $password], $remember)) {

2 // The user is being remembered...

3 }

{tip} If you are using the built-in LoginController that is shipped with Laravel, the
proper logic to “remember” users is already implemented by the traits used by the
controller.

If you are “remembering” users, you may use the viaRemembermethod to determine if the user was
authenticated using the “remember me” cookie:

1 if (Auth::viaRemember()) {

2 //

3 }

Other Authentication Methods

Authenticate A User Instance

If you need to log an existing user instance into your application, you may call the login

method with the user instance. The given object must be an implementation of the Illumi-

nate\Contracts\Auth\Authenticatable contract. Of course, the App\User model included with
Laravel already implements this interface:

1 Auth::login($user);

2

3 // Login and "remember" the given user...

4 Auth::login($user, true);

Of course, you may specify the guard instance you would like to use:

1 Auth::guard('admin')->login($user);

Authentication 284

Authenticate A User By ID

To log a user into the application by their ID, you may use the loginUsingId method. This method
simply accepts the primary key of the user you wish to authenticate:

1 Auth::loginUsingId(1);

2

3 // Login and "remember" the given user...

4 Auth::loginUsingId(1, true);

Authenticate A User Once

You may use the once method to log a user into the application for a single request. No sessions or
cookies will be utilized, which means this method may be helpful when building a stateless API:

1 if (Auth::once($credentials)) {

2 //

3 }

HTTP Basic Authentication

HTTPBasic Authentication²⁰² provides a quickway to authenticate users of your applicationwithout
setting up a dedicated “login” page. To get started, attach the auth.basicmiddleware to your route.
The auth.basic middleware is included with the Laravel framework, so you do not need to define
it:

1 Route::get('profile', function () {

2 // Only authenticated users may enter...

3 })->middleware('auth.basic');

Once the middleware has been attached to the route, you will automatically be prompted for
credentials when accessing the route in your browser. By default, the auth.basic middleware will
use the email column on the user record as the “username”.

²⁰²https://en.wikipedia.org/wiki/Basic_access_authentication

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

Authentication 285

A Note On FastCGI

If you are using PHP FastCGI, HTTP Basic authentication may not work correctly out of the box.
The following lines should be added to your .htaccess file:

1 RewriteCond %{HTTP:Authorization} ^(.+)$

2 RewriteRule .* - [E=HTTP_AUTHORIZATION:%{HTTP:Authorization}]

Stateless HTTP Basic Authentication

You may also use HTTP Basic Authentication without setting a user identifier cookie in the session,
which is particularly useful for API authentication. To do so, define a middleware that calls the
onceBasic method. If no response is returned by the onceBasic method, the request may be passed
further into the application:

1 <?php

2

3 namespace Illuminate\Auth\Middleware;

4

5 use Illuminate\Support\Facades\Auth;

6

7 class AuthenticateOnceWithBasicAuth

8 {

9 /**

10 * Handle an incoming request.

11 *

12 * @param \Illuminate\Http\Request $request

13 * @param \Closure $next

14 * @return mixed

15 */

16 public function handle($request, $next)

17 {

18 return Auth::onceBasic() ?: $next($request);

19 }

20

21 }

Next, register the route middleware and attach it to a route:

Authentication 286

1 Route::get('api/user', function () {

2 // Only authenticated users may enter...

3 })->middleware('auth.basic.once');

Adding Custom Guards

You may define your own authentication guards using the extend method on the Auth facade. You
should place this call to provider within a service provider. Since Laravel already ships with an
AuthServiceProvider, we can place the code in that provider:

1 <?php

2

3 namespace App\Providers;

4

5 use App\Services\Auth\JwtGuard;

6 use Illuminate\Support\Facades\Auth;

7 use Illuminate\Foundation\Support\Providers\AuthServiceProvider as ServiceProvid\

8 er;

9

10 class AuthServiceProvider extends ServiceProvider

11 {

12 /**

13 * Register any application authentication / authorization services.

14 *

15 * @return void

16 */

17 public function boot()

18 {

19 $this->registerPolicies();

20

21 Auth::extend('jwt', function ($app, $name, array $config) {

22 // Return an instance of Illuminate\Contracts\Auth\Guard...

23

24 return new JwtGuard(Auth::createUserProvider($config['provider']));

25 });

26 }

27 }

Authentication 287

As you can see in the example above, the callback passed to the extend method should return an
implementation of Illuminate\Contracts\Auth\Guard. This interface contains a few methods you
will need to implement to define a custom guard. Once your custom guard has been defined, you
may use the guard in the guards configuration of your auth.php configuration file:

1 'guards' => [

2 'api' => [

3 'driver' => 'jwt',

4 'provider' => 'users',

5],

6],

Adding Custom User Providers

If you are not using a traditional relational database to store your users, you will need to extend
Laravel with your own authentication user provider. We will use the provider method on the Auth
facade to define a custom user provider:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\Auth;

6 use App\Extensions\RiakUserProvider;

7 use Illuminate\Support\ServiceProvider;

8

9 class AuthServiceProvider extends ServiceProvider

10 {

11 /**

12 * Register any application authentication / authorization services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 $this->registerPolicies();

19

20 Auth::provider('riak', function ($app, array $config) {

21 // Return an instance of Illuminate\Contracts\Auth\UserProvider...

22

Authentication 288

23 return new RiakUserProvider($app->make('riak.connection'));

24 });

25 }

26 }

After you have registered the provider using the providermethod, you may switch to the new user
provider in your auth.php configuration file. First, define a provider that uses your new driver:

1 'providers' => [

2 'users' => [

3 'driver' => 'riak',

4],

5],

Finally, you may use this provider in your guards configuration:

1 'guards' => [

2 'web' => [

3 'driver' => 'session',

4 'provider' => 'users',

5],

6],

The User Provider Contract

The Illuminate\Contracts\Auth\UserProvider implementations are only responsible for fetching
a Illuminate\Contracts\Auth\Authenticatable implementation out of a persistent storage sys-
tem, such as MySQL, Riak, etc. These two interfaces allow the Laravel authentication mechanisms
to continue functioning regardless of how the user data is stored or what type of class is used to
represent it.

Let’s take a look at the Illuminate\Contracts\Auth\UserProvider contract:

1 <?php

2

3 namespace Illuminate\Contracts\Auth;

Authentication 289

4

5 interface UserProvider {

6

7 public function retrieveById($identifier);

8 public function retrieveByToken($identifier, $token);

9 public function updateRememberToken(Authenticatable $user, $token);

10 public function retrieveByCredentials(array $credentials);

11 public function validateCredentials(Authenticatable $user, array $credential\

12 s);

13

14 }

The retrieveById function typically receives a key representing the user, such as an auto-
incrementing ID from a MySQL database. The Authenticatable implementation matching the ID
should be retrieved and returned by the method.

The retrieveByToken function retrieves a user by their unique $identifier and “remember me”
$token, stored in a field remember_token. As with the previous method, the Authenticatable

implementation should be returned.

The updateRememberToken method updates the $user field remember_token with the new $token.
The new token can be either a fresh token, assigned on a successful “remember me” login attempt,
or null when the user is logging out.

The retrieveByCredentialsmethod receives the array of credentials passed to the Auth::attempt
methodwhen attempting to sign into an application. Themethod should then “query” the underlying
persistent storage for the user matching those credentials. Typically, this method will run a query
with a “where” condition on $credentials['username']. The method should then return an
implementation of Authenticatable. This method should not attempt to do any password
validation or authentication.

The validateCredentials method should compare the given $user with the $credentials to
authenticate the user. For example, this method should probably use Hash::check to compare
the value of $user->getAuthPassword() to the value of $credentials['password']. This method
should return true or false indicating on whether the password is valid.

The Authenticatable Contract

Now that we have explored each of the methods on the UserProvider, let’s take a look at the
Authenticatable contract. Remember, the provider should return implementations of this interface
from the retrieveById and retrieveByCredentials methods:

Authentication 290

1 <?php

2

3 namespace Illuminate\Contracts\Auth;

4

5 interface Authenticatable {

6

7 public function getAuthIdentifierName();

8 public function getAuthIdentifier();

9 public function getAuthPassword();

10 public function getRememberToken();

11 public function setRememberToken($value);

12 public function getRememberTokenName();

13

14 }

This interface is simple. The getAuthIdentifierName method should return the name of the
“primary key” field of the user and the getAuthIdentifier method should return the “primary
key” of the user. In a MySQL back-end, again, this would be the auto-incrementing primary key. The
getAuthPassword should return the user’s hashed password. This interface allows the authentication
system to work with any User class, regardless of what ORM or storage abstraction layer you are
using. By default, Laravel includes a User class in the app directory which implements this interface,
so you may consult this class for an implementation example.

Events

Laravel raises a variety of events during the authentication process. Youmay attach listeners to these
events in your EventServiceProvider:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Auth\Events\Registered' => [

8 'App\Listeners\LogRegisteredUser',

9],

10

11 'Illuminate\Auth\Events\Attempting' => [

12 'App\Listeners\LogAuthenticationAttempt',

Authentication 291

13],

14

15 'Illuminate\Auth\Events\Authenticated' => [

16 'App\Listeners\LogAuthenticated',

17],

18

19 'Illuminate\Auth\Events\Login' => [

20 'App\Listeners\LogSuccessfulLogin',

21],

22

23 'Illuminate\Auth\Events\Logout' => [

24 'App\Listeners\LogSuccessfulLogout',

25],

26

27 'Illuminate\Auth\Events\Lockout' => [

28 'App\Listeners\LogLockout',

29],

30];

Authorization
• Introduction
• Gates A> - Writing Gates A> - Authorizing Actions
• Creating Policies A> - Generating Policies A> - Registering Policies
• Writing Policies A> - Policy Methods A> - Methods Without Models A> - Policy Filters
• Authorizing Actions Using Policies A> - Via The User Model A> - Via Middleware A> - Via
Controller Helpers A> - Via Blade Templates

Introduction

In addition to providing authentication services out of the box, Laravel also provides a simple
way to authorize user actions against a given resource. Like authentication, Laravel’s approach to
authorization is simple, and there are two primary ways of authorizing actions: gates and policies.

Think of gates and policies like routes and controllers. Gates provide a simple, Closure based
approach to authorization while policies, like controllers, group their logic around a particular model
or resource. We’ll explore gates first and then examine policies.

You do not need to choose between exclusively using gates or exclusively using policies when
building an application. Most applications will most likely contain a mixture of gates and policies,
and that is perfectly fine! Gates are most applicable to actions which are not related to any model
or resource, such as viewing an administrator dashboard. In contrast, policies should be used when
you wish to authorize an action for a particular model or resource.

Gates

Writing Gates

Gates are Closures that determine if a user is authorized to perform a given action and are typically
defined in the App\Providers\AuthServiceProvider class using the Gate facade. Gates always
receive a user instance as their first argument, and may optionally receive additional arguments
such as a relevant Eloquent model:

1 /**

2 * Register any authentication / authorization services.

3 *

4 * @return void

Authorization 293

5 */

6 public function boot()

7 {

8 $this->registerPolicies();

9

10 Gate::define('update-post', function ($user, $post) {

11 return $user->id == $post->user_id;

12 });

13 }

Authorizing Actions

To authorize an action using gates, you should use the allows or deniesmethods. Note that you are
not required to pass the currently authenticated user to these methods. Laravel will automatically
take care of passing the user into the gate Closure:

1 if (Gate::allows('update-post', $post)) {

2 // The current user can update the post...

3 }

4

5 if (Gate::denies('update-post', $post)) {

6 // The current user can't update the post...

7 }

If you would like to determine if a particular user is authorized to perform an action, you may use
the forUser method on the Gate facade:

1 if (Gate::forUser($user)->allows('update-post', $post)) {

2 // The user can update the post...

3 }

4

5 if (Gate::forUser($user)->denies('update-post', $post)) {

6 // The user can't update the post...

7 }

Authorization 294

Creating Policies

Generating Policies

Policies are classes that organize authorization logic around a particular model or resource. For
example, if your application is a blog, you may have a Postmodel and a corresponding PostPolicy
to authorize user actions such as creating or updating posts.

You may generate a policy using the make:policy artisan command. The generated policy will be
placed in the app/Policies directory. If this directory does not exist in your application, Laravel
will create it for you:

1 php artisan make:policy PostPolicy

The make:policy command will generate an empty policy class. If you would like to generate a
class with the basic “CRUD” policy methods already included in the class, you may specify a --

model when executing the command:

1 php artisan make:policy PostPolicy --model=Post

{tip} All policies are resolved via the Laravel service container, allowing you to type-
hint any needed dependencies in the policy’s constructor to have them automatically
injected.

Registering Policies

Once the policy exists, it needs to be registered. The AuthServiceProvider included with fresh
Laravel applications contains a policies property which maps your Eloquent models to their
corresponding policies. Registering a policy will instruct Laravel which policy to utilize when
authorizing actions against a given model:

1 <?php

2

3 namespace App\Providers;

4

5 use App\Post;

6 use App\Policies\PostPolicy;

Authorization 295

7 use Illuminate\Support\Facades\Gate;

8 use Illuminate\Foundation\Support\Providers\AuthServiceProvider as ServiceProvid\

9 er;

10

11 class AuthServiceProvider extends ServiceProvider

12 {

13 /**

14 * The policy mappings for the application.

15 *

16 * @var array

17 */

18 protected $policies = [

19 Post::class => PostPolicy::class,

20];

21

22 /**

23 * Register any application authentication / authorization services.

24 *

25 * @return void

26 */

27 public function boot()

28 {

29 $this->registerPolicies();

30

31 //

32 }

33 }

Writing Policies

Policy Methods

Once the policy has been registered, youmay addmethods for each action it authorizes. For example,
let’s define an update method on our PostPolicy which determines if a given User can update a
given Post instance.

The updatemethod will receive a User and a Post instance as its arguments, and should return true

or false indicating whether the user is authorized to update the given Post. So, for this example,
let’s verify that the user’s id matches the user_id on the post:

Authorization 296

1 <?php

2

3 namespace App\Policies;

4

5 use App\User;

6 use App\Post;

7

8 class PostPolicy

9 {

10 /**

11 * Determine if the given post can be updated by the user.

12 *

13 * @param \App\User $user

14 * @param \App\Post $post

15 * @return bool

16 */

17 public function update(User $user, Post $post)

18 {

19 return $user->id === $post->user_id;

20 }

21 }

You may continue to define additional methods on the policy as needed for the various actions it
authorizes. For example, youmight define view or deletemethods to authorize various Post actions,
but remember you are free to give your policy methods any name you like.

{tip} If you used the --model optionwhen generating your policy via the Artisan console,
it will already contain methods for the view, create, update, and delete actions.

Methods Without Models

Some policy methods only receive the currently authenticated user and not an instance of the model
they authorize. This situation is most common when authorizing create actions. For example, if you
are creating a blog, you may wish to check if a user is authorized to create any posts at all.

When defining policy methods that will not receive a model instance, such as a create method,
it will not receive a model instance. Instead, you should define the method as only expecting the
authenticated user:

Authorization 297

1 /**

2 * Determine if the given user can create posts.

3 *

4 * @param \App\User $user

5 * @return bool

6 */

7 public function create(User $user)

8 {

9 //

10 }

{tip} If you used the --model option when generating your policy, all of the relevant
“CRUD” policy methods will already be defined on the generated policy.

Policy Filters

For certain users, you may wish to authorize all actions within a given policy. To accomplish this,
define a beforemethod on the policy. The beforemethodwill be executed before any other methods
on the policy, giving you an opportunity to authorize the action before the intended policy method
is actually called. This feature is most commonly used for authorizing application administrators to
perform any action:

1 public function before($user, $ability)

2 {

3 if ($user->isSuperAdmin()) {

4 return true;

5 }

6 }

Authorizing Actions Using Policies

Via The User Model

The User model that is included with your Laravel application includes two helpful methods for
authorizing actions: can and cant. The can method receives the action you wish to authorize and
the relevant model. For example, let’s determine if a user is authorized to update a given Postmodel:

Authorization 298

1 if ($user->can('update', $post)) {

2 //

3 }

If a policy is registered for the given model, the can method will automatically call the appropriate
policy and return the boolean result. If no policy is registered for the model, the can method will
attempt to call the Closure based Gate matching the given action name.

Actions That Don’t Require Models

Remember, some actions like createmay not require a model instance. In these situations, you may
pass a class name to the can method. The class name will be used to determine which policy to use
when authorizing the action:

1 use App\Post;

2

3 if ($user->can('create', Post::class)) {

4 // Executes the "create" method on the relevant policy...

5 }

Via Middleware

Laravel includes a middleware that can authorize actions before the incoming request even reaches
your routes or controllers. By default, the Illuminate\Auth\Middleware\Authorize middleware
is assigned the can key in your App\Http\Kernel class. Let’s explore an example of using the can

middleware to authorize that a user can update a blog post:

1 use App\Post;

2

3 Route::put('/post/{post}', function (Post $post) {

4 // The current user may update the post...

5 })->middleware('can:update,post');

In this example, we’re passing the canmiddleware two arguments. The first is the name of the action
we wish to authorize and the second is the route parameter we wish to pass to the policy method.
In this case, since we are using implicit model binding, a Post model will be passed to the policy

Authorization 299

method. If the user is not authorized to perform the given action, a HTTP response with a 403 status
code will be generated by the middleware.

Actions That Don’t Require Models

Again, some actions like createmay not require a model instance. In these situations, you may pass
a class name to the middleware. The class name will be used to determine which policy to use when
authorizing the action:

1 Route::post('/post', function () {

2 // The current user may create posts...

3 })->middleware('can:create,App\Post');

Via Controller Helpers

In addition to helpful methods provided to the User model, Laravel provides a helpful authorize
method to any of your controllers which extend the App\Http\Controllers\Controller base
class. Like the can method, this method accepts the name of the action you wish to authorize
and the relevant model. If the action is not authorized, the authorize method will throw an
Illuminate\Auth\Access\AuthorizationException, which the default Laravel exception handler
will convert to an HTTP response with a 403 status code:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Post;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class PostController extends Controller

10 {

11 /**

12 * Update the given blog post.

13 *

14 * @param Request $request

15 * @param Post $post

16 * @return Response

17 */

18 public function update(Request $request, Post $post)

Authorization 300

19 {

20 $this->authorize('update', $post);

21

22 // The current user can update the blog post...

23 }

24 }

Actions That Don’t Require Models

As previously discussed, some actions like create may not require a model instance. In these
situations, you may pass a class name to the authorize method. The class name will be used to
determine which policy to use when authorizing the action:

1 /**

2 * Create a new blog post.

3 *

4 * @param Request $request

5 * @return Response

6 */

7 public function create(Request $request)

8 {

9 $this->authorize('create', Post::class);

10

11 // The current user can create blog posts...

12 }

Via Blade Templates

When writing Blade templates, you may wish to display a portion of the page only if the user is
authorized to perform a given action. For example, you may wish to show an update form for a
blog post only if the user can actually update the post. In this situation, you may use the @can and
@cannot directives.

1 @can('update', $post)

2 <!-- The Current User Can Update The Post -->

3 @endcan

4

5 @cannot('update', $post)

Authorization 301

6 <!-- The Current User Can't Update The Post -->

7 @endcannot

These directives are convenient short-cuts for writing @if and @unless statements. The @can and
@cannot statements above respectively translate to the following statements:

1 @if (Auth::user()->can('update', $post))

2 <!-- The Current User Can Update The Post -->

3 @endif

4

5 @unless (Auth::user()->can('update', $post))

6 <!-- The Current User Can't Update The Post -->

7 @endunless

Actions That Don’t Require Models

Like most of the other authorization methods, you may pass a class name to the @can and @cannot

directives if the action does not require a model instance:

1 @can('create', Post::class)

2 <!-- The Current User Can Create Posts -->

3 @endcan

4

5 @cannot('create', Post::class)

6 <!-- The Current User Can't Create Posts -->

7 @endcannot

Resetting Passwords
• Introduction
• Database Considerations
• Routing
• Views
• After Resetting Passwords
• Customization

Introduction

{tip} Want to get started fast? Just run php artisan make:auth in a fresh Laravel
application and navigate your browser to http://your-app.dev/register or any other
URL that is assigned to your application. This single command will take care of
scaffolding your entire authentication system, including resetting passwords!

Most web applications provide a way for users to reset their forgotten passwords. Rather than forcing
you to re-implement this on each application, Laravel provides convenient methods for sending
password reminders and performing password resets.

{note} Before using the password reset features of Laravel, your user must use the
Illuminate\Notifications\Notifiable trait.

Database Considerations

To get started, verify that your App\Usermodel implements the Illuminate\Contracts\Auth\CanResetPassword
contract. Of course, the App\User model included with the framework already implements this
interface, and uses the Illuminate\Auth\Passwords\CanResetPassword trait to include themethods
needed to implement the interface.

Generating The Reset Token Table Migration

Next, a table must be created to store the password reset tokens. The migration for this table is
included with Laravel out of the box, and resides in the database/migrations directory. So, all you
need to do is run your database migrations:

Resetting Passwords 303

1 php artisan migrate

Routing

Laravel includes Auth\ForgotPasswordController and Auth\ResetPasswordController classes
that contains the logic necessary to e-mail password reset links and reset user passwords. All of the
routes needed to perform password resets may be generated using the make:authArtisan command:

1 php artisan make:auth

Views

Again, Laravel will generate all of the necessary views for password reset when the make:auth

command is executed. These views are placed in resources/views/auth/passwords. You are free
to customize them as needed for your application.

After Resetting Passwords

Once you have defined the routes and views to reset your user’s passwords, you may simply
access the route in your browser at /password/reset. The ForgotPasswordController included
with the framework already includes the logic to send the password reset link e-mails, while the
ResetPasswordController includes the logic to reset user passwords.

After a password is reset, the user will automatically be logged into the application and redirected
to /home. You can customize the post password reset redirect location by defining a redirectTo

property on the ResetPasswordController:

1 protected $redirectTo = '/dashboard';

{note} By default, password reset tokens expire after one hour. You may change this via
the password reset expire option in your config/auth.php file.

Resetting Passwords 304

Customization

Authentication Guard Customization

In your auth.php configuration file, you may configure multiple “guards”, which may be used to
define authentication behavior for multiple user tables. You can customize the included ResetPass-
wordController to use the guard of your choice by overriding the guard method on the controller.
This method should return a guard instance:

1 use Illuminate\Support\Facades\Auth;

2

3 protected function guard()

4 {

5 return Auth::guard('guard-name');

6 }

Password Broker Customization

In your auth.php configuration file, you may configure multiple password “brokers”, which may
be used to reset passwords on multiple user tables. You can customize the included ForgotPass-

wordController and ResetPasswordController to use the broker of your choice by overriding the
broker method:

1 use Illuminate\Support\Facades\Password;

2

3 /**

4 * Get the broker to be used during password reset.

5 *

6 * @return PasswordBroker

7 */

8 protected function broker()

9 {

10 return Password::broker('name');

11 }

Reset Email Customization

You may easily modify the notification class used to send the password reset link to the user. To
get started, override the sendPasswordResetNotificationmethod on your Usermodel. Within this

Resetting Passwords 305

method, you may send the notification using any notification class you choose. The password reset
$token is the first argument received by the method:

1 /**

2 * Send the password reset notification.

3 *

4 * @param string $token

5 * @return void

6 */

7 public function sendPasswordResetNotification($token)

8 {

9 $this->notify(new ResetPasswordNotification($token));

10 }

API Authentication (Passport)
• Introduction
• Installation A> - Frontend Quickstart
• Configuration A> - Token Lifetimes
• Issuing Access Tokens A> - Managing Clients A> - Requesting Tokens A> - Refreshing Tokens
• Password Grant Tokens A> - Creating A Password Grant Client A> - Requesting Tokens A> -
Requesting All Scopes

• Implicit Grant Tokens
• Personal Access Tokens A> - Creating A Personal Access Client A> - Managing Personal
Access Tokens

• Protecting Routes A> - Via Middleware A> - Passing The Access Token
• Token Scopes A> - Defining Scopes A> - Assigning Scopes To Tokens A> - Checking Scopes
• Consuming Your API With JavaScript
• Events

Introduction

Laravel already makes it easy to perform authentication via traditional login forms, but what about
APIs? APIs typically use tokens to authenticate users and do not maintain session state between
requests. Laravel makes API authentication a breeze using Laravel Passport, which provides a full
OAuth2 server implementation for your Laravel application in a matter of minutes. Passport is built
on top of the League OAuth2 server²⁰³ that is maintained by Alex Bilbie.

{note} This documentation assumes you are already familiar with OAuth2. If you do
not know anything about OAuth2, consider familiarizing yourself with the general
terminology and features of OAuth2 before continuing.

Installation

To get started, install Passport via the Composer package manager:

²⁰³https://github.com/thephpleague/oauth2-server

https://github.com/thephpleague/oauth2-server
https://github.com/thephpleague/oauth2-server

API Authentication (Passport) 307

1 composer require laravel/passport

Next, register the Passport service provider in the providers array of your config/app.php

configuration file:

1 Laravel\Passport\PassportServiceProvider::class,

The Passport service provider registers its own database migration directory with the framework, so
you should migrate your database after registering the provider. The Passport migrations will create
the tables your application needs to store clients and access tokens:

1 php artisan migrate

Next, you should run the passport:install command. This command will create the encryption
keys needed to generate secure access tokens. In addition, the command will create “personal access”
and “password grant” clients which will be used to generate access tokens:

1 php artisan passport:install

After running this command, add the Laravel\Passport\HasApiTokens trait to your App\User

model. This trait will provide a few helper methods to your model which allow you to inspect
the authenticated user’s token and scopes:

1 <?php

2

3 namespace App;

4

5 use Laravel\Passport\HasApiTokens;

6 use Illuminate\Notifications\Notifiable;

7 use Illuminate\Foundation\Auth\User as Authenticatable;

8

9 class User extends Authenticatable

10 {

API Authentication (Passport) 308

11 use HasApiTokens, Notifiable;

12 }

Next, you should call the Passport::routes method within the boot method of your AuthServi-
ceProvider. This method will register the routes necessary to issue access tokens and revoke access
tokens, clients, and personal access tokens:

1 <?php

2

3 namespace App\Providers;

4

5 use Laravel\Passport\Passport;

6 use Illuminate\Support\Facades\Gate;

7 use Illuminate\Foundation\Support\Providers\AuthServiceProvider as ServiceProvid\

8 er;

9

10 class AuthServiceProvider extends ServiceProvider

11 {

12 /**

13 * The policy mappings for the application.

14 *

15 * @var array

16 */

17 protected $policies = [

18 'App\Model' => 'App\Policies\ModelPolicy',

19];

20

21 /**

22 * Register any authentication / authorization services.

23 *

24 * @return void

25 */

26 public function boot()

27 {

28 $this->registerPolicies();

29

30 Passport::routes();

31 }

32 }

API Authentication (Passport) 309

Finally, in your config/auth.php configuration file, you should set the driver option of the api

authentication guard to passport. This will instruct your application to use Passport’s TokenGuard
when authenticating incoming API requests:

1 'guards' => [

2 'web' => [

3 'driver' => 'session',

4 'provider' => 'users',

5],

6

7 'api' => [

8 'driver' => 'passport',

9 'provider' => 'users',

10],

11],

Frontend Quickstart

{note} In order to use the Passport Vue components, you must be using the Vue²⁰⁴
JavaScript framework. These components also use the Bootstrap CSS framework.
However, even if you are not using these tools, the components serve as a valuable
reference for your own frontend implementation.

Passport ships with a JSON API that you may use to allow your users to create clients and personal
access tokens. However, it can be time consuming to code a frontend to interact with these APIs. So,
Passport also includes pre-built Vue²⁰⁵ components you may use as an example implementation or
starting point for your own implementation.

To publish the Passport Vue components, use the vendor:publish Artisan command:

1 php artisan vendor:publish --tag=passport-components

The published components will be placed in your resources/assets/js/components directory.
Once the components have been published, you should register them in your resources/asset-
s/js/app.js file:

²⁰⁴https://vuejs.org
²⁰⁵https://vuejs.org

https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 310

1 Vue.component(

2 'passport-clients',

3 require('./components/passport/Clients.vue')

4);

5

6 Vue.component(

7 'passport-authorized-clients',

8 require('./components/passport/AuthorizedClients.vue')

9);

10

11 Vue.component(

12 'passport-personal-access-tokens',

13 require('./components/passport/PersonalAccessTokens.vue')

14);

Once the components have been registered, you may drop them into one of your application’s
templates to get started creating clients and personal access tokens:

1 <passport-clients></passport-clients>

2 <passport-authorized-clients></passport-authorized-clients>

3 <passport-personal-access-tokens></passport-personal-access-tokens>

Configuration

Token Lifetimes

By default, Passport issues long-lived access tokens that never need to be refreshed. If you would like
to configure a shorter token lifetime, you may use the tokensExpireIn and refreshTokensExpireIn
methods. These methods should be called from the boot method of your AuthServiceProvider:

1 use Carbon\Carbon;

2

3 /**

4 * Register any authentication / authorization services.

5 *

6 * @return void

7 */

API Authentication (Passport) 311

8 public function boot()

9 {

10 $this->registerPolicies();

11

12 Passport::routes();

13

14 Passport::tokensExpireIn(Carbon::now()->addDays(15));

15

16 Passport::refreshTokensExpireIn(Carbon::now()->addDays(30));

17 }

Issuing Access Tokens

Using OAuth2 with authorization codes is how most developers are familiar with OAuth2. When
using authorization codes, a client application will redirect a user to your server where they will
either approve or deny the request to issue an access token to the client.

Managing Clients

First, developers building applications that need to interact with your application’s API will need to
register their application with yours by creating a “client”. Typically, this consists of providing the
name of their application and a URL that your application can redirect to after users approve their
request for authorization.

The passport:client Command

The simplest way to create a client is using the passport:client Artisan command. This command
may be used to create your own clients for testing your OAuth2 functionality. When you run the
client command, Passport will prompt you for more information about your client and will provide
you with a client ID and secret:

1 php artisan passport:client

JSON API

Since your users will not be able to utilize the client command, Passport provides a JSON API that
you may use to create clients. This saves you the trouble of having to manually code controllers for
creating, updating, and deleting clients.

API Authentication (Passport) 312

However, you will need to pair Passport’s JSON API with your own frontend to provide a dashboard
for your users to manage their clients. Below, we’ll review all of the API endpoints for managing
clients. For convenience, we’ll use Vue²⁰⁶ to demonstrate making HTTP requests to the endpoints.

{tip} If you don’t want to implement the entire client management frontend yourself,
you can use the frontend quickstart to have a fully functional frontend in a matter of
minutes.

GET /oauth/clients

This route returns all of the clients for the authenticated user. This is primarily useful for listing all
of the user’s clients so that they may edit or delete them:

1 this.$http.get('/oauth/clients')

2 .then(response => {

3 console.log(response.data);

4 });

POST /oauth/clients

This route is used to create new clients. It requires two pieces of data: the client’s name and a redirect
URL. The redirect URL is where the user will be redirected after approving or denying a request
for authorization.

When a client is created, it will be issued a client ID and client secret. These values will be used
when requesting access tokens from your application. The client creation route will return the new
client instance:

1 const data = {

2 name: 'Client Name',

3 redirect: 'http://example.com/callback'

4 };

5

6 this.$http.post('/oauth/clients', data)

7 .then(response => {

8 console.log(response.data);

9 })

10 .catch (response => {

²⁰⁶https://vuejs.org

https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 313

11 // List errors on response...

12 });

PUT /oauth/clients/{client-id}

This route is used to update clients. It requires two pieces of data: the client’s name and a redirect
URL. The redirect URL is where the user will be redirected after approving or denying a request
for authorization. The route will return the updated client instance:

1 const data = {

2 name: 'New Client Name',

3 redirect: 'http://example.com/callback'

4 };

5

6 this.$http.put('/oauth/clients/' + clientId, data)

7 .then(response => {

8 console.log(response.data);

9 })

10 .catch (response => {

11 // List errors on response...

12 });

DELETE /oauth/clients/{client-id}

This route is used to delete clients:

1 this.$http.delete('/oauth/clients/' + clientId)

2 .then(response => {

3 //

4 });

Requesting Tokens

Redirecting For Authorization

Once a client has been created, developers may use their client ID and secret to request an
authorization code and access token from your application. First, the consuming application should

API Authentication (Passport) 314

make a redirect request to your application’s /oauth/authorize route like so:

1 Route::get('/redirect', function () {

2 $query = http_build_query([

3 'client_id' => 'client-id',

4 'redirect_uri' => 'http://example.com/callback',

5 'response_type' => 'code',

6 'scope' => '',

7]);

8

9 return redirect('http://your-app.com/oauth/authorize?'.$query);

10 });

{tip} Remember, the /oauth/authorize route is already defined by the Passport::routes
method. You do not need to manually define this route.

Approving The Request

When receiving authorization requests, Passport will automatically display a template to the user
allowing them to approve or deny the authorization request. If they approve the request, they
will be redirected back to the redirect_uri that was specified by the consuming application. The
redirect_uri must match the redirect URL that was specified when the client was created.

If you would like to customize the authorization approval screen, you may publish Passport’s
views using the vendor:publish Artisan command. The published views will be placed in re-

sources/views/vendor/passport:

1 php artisan vendor:publish --tag=passport-views

Converting Authorization Codes To Access Tokens

If the user approves the authorization request, they will be redirected back to the consuming
application. The consumer should then issue a POST request to your application to request an access
token. The request should include the authorization code that was issued by when the user approved
the authorization request. In this example, we’ll use the Guzzle HTTP library to make the POST

request:

API Authentication (Passport) 315

1 Route::get('/callback', function (Request $request) {

2 $http = new GuzzleHttp\Client;

3

4 $response = $http->post('http://your-app.com/oauth/token', [

5 'form_params' => [

6 'grant_type' => 'authorization_code',

7 'client_id' => 'client-id',

8 'client_secret' => 'client-secret',

9 'redirect_uri' => 'http://example.com/callback',

10 'code' => $request->code,

11],

12]);

13

14 return json_decode((string) $response->getBody(), true);

15 });

This /oauth/token route will return a JSON response containing access_token, refresh_token, and
expires_in attributes. The expires_in attribute contains the number of seconds until the access
token expires.

{tip} Like the /oauth/authorize route, the /oauth/token route is defined for you by the
Passport::routes method. There is no need to manually define this route.

Refreshing Tokens

If your application issues short-lived access tokens, users will need to refresh their access tokens via
the refresh token that was provided to them when the access token was issued. In this example, we’ll
use the Guzzle HTTP library to refresh the token:

1 $http = new GuzzleHttp\Client;

2

3 $response = $http->post('http://your-app.com/oauth/token', [

4 'form_params' => [

5 'grant_type' => 'refresh_token',

6 'refresh_token' => 'the-refresh-token',

7 'client_id' => 'client-id',

8 'client_secret' => 'client-secret',

9 'scope' => '',

10],

11]);

12

API Authentication (Passport) 316

13 return json_decode((string) $response->getBody(), true);

This /oauth/token route will return a JSON response containing access_token, refresh_token, and
expires_in attributes. The expires_in attribute contains the number of seconds until the access
token expires.

Password Grant Tokens

The OAuth2 password grant allows your other first-party clients, such as a mobile application, to
obtain an access token using an e-mail address / username and password. This allows you to issue
access tokens securely to your first-party clients without requiring your users to go through the
entire OAuth2 authorization code redirect flow.

Creating A Password Grant Client

Before your application can issue tokens via the password grant, you will need to create a password
grant client. You may do this using the passport:client command with the --password option. If
you have already run the passport:install command, you do not need to run this command:

1 php artisan passport:client --password

Requesting Tokens

Once you have created a password grant client, you may request an access token by issuing a POST
request to the /oauth/token route with the user’s email address and password. Remember, this route
is already registered by the Passport::routes method so there is no need to define it manually. If
the request is successful, you will receive an access_token and refresh_token in the JSON response
from the server:

1 $http = new GuzzleHttp\Client;

2

3 $response = $http->post('http://your-app.com/oauth/token', [

4 'form_params' => [

5 'grant_type' => 'password',

6 'client_id' => 'client-id',

7 'client_secret' => 'client-secret',

8 'username' => 'taylor@laravel.com',

API Authentication (Passport) 317

9 'password' => 'my-password',

10 'scope' => '',

11],

12]);

13

14 return json_decode((string) $response->getBody(), true);

{tip} Remember, access tokens are long-lived by default. However, you are free to
configure your maximum access token lifetime if needed.

Requesting All Scopes

When using the password grant, you may wish to authorize the token for all of the scopes supported
by your application. You can do this by requesting the * scope. If you request the * scope, the can
method on the token instance will always return true. This scope may only be assigned to a token
that is issued using the password grant:

1 $response = $http->post('http://your-app.com/oauth/token', [

2 'form_params' => [

3 'grant_type' => 'password',

4 'client_id' => 'client-id',

5 'client_secret' => 'client-secret',

6 'username' => 'taylor@laravel.com',

7 'password' => 'my-password',

8 'scope' => '*',

9],

10]);

Implicit Grant Tokens

The implicit grant is similar to the authorization code grant; however, the token is returned to the
client without exchanging an authorization code. This grant is most commonly used for JavaScript
or mobile applications where the client credentials can’t be securely stored. To enable the grant, call
the enableImplicitGrant method in your AuthServiceProvider:

API Authentication (Passport) 318

1 /**

2 * Register any authentication / authorization services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->registerPolicies();

9

10 Passport::routes();

11

12 Passport::enableImplicitGrant();

13 }

Once a grant has been enabled, developers may use their client ID to request an access token from
your application. The consuming application should make a redirect request to your application’s
/oauth/authorize route like so:

1 Route::get('/redirect', function () {

2 $query = http_build_query([

3 'client_id' => 'client-id',

4 'redirect_uri' => 'http://example.com/callback',

5 'response_type' => 'token',

6 'scope' => '',

7]);

8

9 return redirect('http://your-app.com/oauth/authorize?'.$query);

10 });

{tip} Remember, the /oauth/authorize route is already defined by the Passport::routes
method. You do not need to manually define this route.

Personal Access Tokens

Sometimes, your users may want to issue access tokens to themselves without going through the
typical authorization code redirect flow. Allowing users to issue tokens to themselves via your
application’s UI can be useful for allowing users to experiment with your API or may serve as a
simpler approach to issuing access tokens in general.

API Authentication (Passport) 319

{note} Personal access tokens are always long-lived. Their lifetime is not modified when
using the tokensExpireIn or refreshTokensExpireIn methods.

Creating A Personal Access Client

Before your application can issue personal access tokens, you will need to create a personal access
client. You may do this using the passport:client command with the --personal option. If you
have already run the passport:install command, you do not need to run this command:

1 php artisan passport:client --personal

Managing Personal Access Tokens

Once you have created a personal access client, you may issue tokens for a given user using the
createTokenmethod on the Usermodel instance. The createTokenmethod accepts the name of the
token as its first argument and an optional array of scopes as its second argument:

1 $user = App\User::find(1);

2

3 // Creating a token without scopes...

4 $token = $user->createToken('Token Name')->accessToken;

5

6 // Creating a token with scopes...

7 $token = $user->createToken('My Token', ['place-orders'])->accessToken;

JSON API

Passport also includes a JSON API for managing personal access tokens. You may pair this with
your own frontend to offer your users a dashboard for managing personal access tokens. Below,
we’ll review all of the API endpoints for managing personal access tokens. For convenience, we’ll
use Vue²⁰⁷ to demonstrate making HTTP requests to the endpoints.

{tip} If you don’t want to implement the personal access token frontend yourself, you can
use the frontend quickstart to have a fully functional frontend in a matter of minutes.

²⁰⁷https://vuejs.org

https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 320

GET /oauth/scopes

This route returns all of the scopes defined for your application. You may use this route to list the
scopes a user may assign to a personal access token:

1 this.$http.get('/oauth/scopes')

2 .then(response => {

3 console.log(response.data);

4 });

GET /oauth/personal-access-tokens

This route returns all of the personal access tokens that the authenticated user has created. This is
primarily useful for listing all of the user’s token so that they may edit or delete them:

1 this.$http.get('/oauth/personal-access-tokens')

2 .then(response => {

3 console.log(response.data);

4 });

POST /oauth/personal-access-tokens

This route creates new personal access tokens. It requires two pieces of data: the token’s name and
the scopes that should be assigned to the token:

1 const data = {

2 name: 'Token Name',

3 scopes: []

4 };

5

6 this.$http.post('/oauth/personal-access-tokens', data)

7 .then(response => {

8 console.log(response.data.accessToken);

9 })

10 .catch (response => {

11 // List errors on response...

API Authentication (Passport) 321

12 });

DELETE /oauth/personal-access-tokens/{token-id}

This route may be used to delete personal access tokens:

1 this.$http.delete('/oauth/personal-access-tokens/' + tokenId);

Protecting Routes

Via Middleware

Passport includes an authentication guard that will validate access tokens on incoming requests.
Once you have configured the api guard to use the passport driver, you only need to specify the
auth:api middleware on any routes that require a valid access token:

1 Route::get('/user', function () {

2 //

3 })->middleware('auth:api');

Passing The Access Token

When calling routes that are protected by Passport, your application’s API consumers should specify
their access token as a Bearer token in the Authorization header of their request. For example, when
using the Guzzle HTTP library:

1 $response = $client->request('GET', '/api/user', [

2 'headers' => [

3 'Accept' => 'application/json',

4 'Authorization' => 'Bearer '.$accessToken,

5],

6]);

API Authentication (Passport) 322

Token Scopes

Defining Scopes

Scopes allow your API clients to request a specific set of permissions when requesting authorization
to access an account. For example, if you are building an e-commerce application, not all API
consumers will need the ability to place orders. Instead, youmay allow the consumers to only request
authorization to access order shipment statuses. In other words, scopes allow your application’s users
to limit the actions a third-party application can perform on their behalf.

You may define your API’s scopes using the Passport::tokensCan method in the boot method
of your AuthServiceProvider. The tokensCan method accepts an array of scope names and scope
descriptions. The scope description may be anything you wish and will be displayed to users on the
authorization approval screen:

1 use Laravel\Passport\Passport;

2

3 Passport::tokensCan([

4 'place-orders' => 'Place orders',

5 'check-status' => 'Check order status',

6]);

Assigning Scopes To Tokens

When Requesting Authorization Codes

When requesting an access token using the authorization code grant, consumers should specify their
desired scopes as the scope query string parameter. The scope parameter should be a space-delimited
list of scopes:

1 Route::get('/redirect', function () {

2 $query = http_build_query([

3 'client_id' => 'client-id',

4 'redirect_uri' => 'http://example.com/callback',

5 'response_type' => 'code',

6 'scope' => 'place-orders check-status',

API Authentication (Passport) 323

7]);

8

9 return redirect('http://your-app.com/oauth/authorize?'.$query);

10 });

When Issuing Personal Access Tokens

If you are issuing personal access tokens using the Usermodel’s createTokenmethod, you may pass
the array of desired scopes as the second argument to the method:

1 $token = $user->createToken('My Token', ['place-orders'])->accessToken;

Checking Scopes

Passport includes two middleware that may be used to verify that an incoming request is authenti-
cated with a token that has been granted a given scope. To get started, add the following middleware
to the $routeMiddleware property of your app/Http/Kernel.php file:

1 'scopes' => \Laravel\Passport\Http\Middleware\CheckScopes::class,

2 'scope' => \Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

Check For All Scopes

The scopes middleware may be assigned to a route to verify that the incoming request’s access
token has all of the listed scopes:

1 Route::get('/orders', function () {

2 // Access token has both "check-status" and "place-orders" scopes...

3 })->middleware('scopes:check-status,place-orders');

API Authentication (Passport) 324

Check For Any Scopes

The scopemiddleware may be assigned to a route to verify that the incoming request’s access token
has at least one of the listed scopes:

1 Route::get('/orders', function () {

2 // Access token has either "check-status" or "place-orders" scope...

3 })->middleware('scope:check-status,place-orders');

Checking Scopes On A Token Instance

Once an access token authenticated request has entered your application, you may still check if the
token has a given scope using the tokenCan method on the authenticated User instance:

1 use Illuminate\Http\Request;

2

3 Route::get('/orders', function (Request $request) {

4 if ($request->user()->tokenCan('place-orders')) {

5 //

6 }

7 });

Consuming Your API With JavaScript

When building an API, it can be extremely useful to be able to consume your own API from your
JavaScript application. This approach to API development allows your own application to consume
the same API that you are sharing with the world. The same API may be consumed by your web
application, mobile applications, third-party applications, and any SDKs that you may publish on
various package managers.

Typically, if you want to consume your API from your JavaScript application, you would need to
manually send an access token to the application and pass it with each request to your application.
However, Passport includes a middleware that can handle this for you. All you need to do is add the
CreateFreshApiToken middleware to your web middleware group:

API Authentication (Passport) 325

1 'web' => [

2 // Other middleware...

3 \Laravel\Passport\Http\Middleware\CreateFreshApiToken::class,

4],

This Passport middleware will attach a laravel_token cookie to your outgoing responses. This
cookie contains an encrypted JWT that Passport will use to authenticate API requests from your
JavaScript application. Now, you may make requests to your application’s API without explicitly
passing an access token:

1 this.$http.get('/user')

2 .then(response => {

3 console.log(response.data);

4 });

When using this method of authentication, you will need to send the CSRF token with every request
via the X-CSRF-TOKEN header. Laravel will automatically send this header if you are using the default
Vue²⁰⁸ configuration that is included with the framework:

1 Vue.http.interceptors.push((request, next) => {

2 request.headers.set('X-CSRF-TOKEN', Laravel.csrfToken);

3

4 next();

5 });

{note} If you are using a different JavaScript framework, you should make sure it is
configured to send this header with every outgoing request.

Events

Passport raises events when issuing access tokens and refresh tokens. You may use these events to
prune or revoke other access tokens in your database. You may attach listeners to these events in
your application’s EventServiceProvider:

²⁰⁸https://vuejs.org

https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 326

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 A> 'Laravel\Passport\Events\AccessTokenCreated' => [

8 A> 'App\Listeners\RevokeOldTokens',

9 A>],

10 A>

11 A> 'Laravel\Passport\Events\RefreshTokenCreated' => [

12 A> 'App\Listeners\PruneOldTokens',

13 A>],

14

15];

Encryption
• Introduction
• Configuration
• Using The Encrypter

Introduction

Laravel’s encrypter uses OpenSSL to provide AES-256 and AES-128 encryption. You are strongly
encouraged to use Laravel’s built-in encryption facilities and not attempt to roll your own “home
grown” encryption algorithms. All of Laravel’s encrypted values are signed using a message
authentication code (MAC) so that their underlying value can not be modified once encrypted.

Configuration

Before using Laravel’s encrypter, you must set a key option in your config/app.php configuration
file. You should use the php artisan key:generate command to generate this key since this Artisan
command will use PHP’s secure random bytes generator to build your key. If this value is not
properly set, all values encrypted by Laravel will be insecure.

Using The Encrypter

Encrypting A Value

You may encrypt a value using the encrypt helper. All encrypted values are encrypted using
OpenSSL and the AES-256-CBC cipher. Furthermore, all encrypted values are signed with a message
authentication code (MAC) to detect any modifications to the encrypted string:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\User;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class UserController extends Controller

Encryption 328

10 {

11 /**

12 * Store a secret message for the user.

13 *

14 * @param Request $request

15 * @param int $id

16 * @return Response

17 */

18 public function storeSecret(Request $request, $id)

19 {

20 $user = User::findOrFail($id);

21

22 $user->fill([

23 'secret' => encrypt($request->secret)

24])->save();

25 }

26 }

{note} Encrypted values are passed through serialize during encryption, which allows
for encryption of objects and arrays. Thus, non-PHP clients receiving encrypted values
will need to unserialize the data.

Decrypting A Value

You may decrypt values using the decrypt helper. If the value can not be properly decrypted, such
as when the MAC is invalid, an Illuminate\Contracts\Encryption\DecryptException will be
thrown:

1 use Illuminate\Contracts\Encryption\DecryptException;

2

3 try {

4 $decrypted = decrypt($encryptedValue);

5 } catch (DecryptException $e) {

6 //

7 }

Hashing
• Introduction
• Basic Usage

Introduction

The Laravel Hash facade provides secure Bcrypt hashing for storing user passwords. If you are using
the built-in LoginController and RegisterController classes that are included with your Laravel
application, they will automatically use Bcrypt for registration and authentication.

{tip} Bcrypt is a great choice for hashing passwords because its “work factor” is
adjustable, which means that the time it takes to generate a hash can be increased as
hardware power increases.

Basic Usage

You may hash a password by calling the make method on the Hash facade:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6 use Illuminate\Support\Facades\Hash;

7 use App\Http\Controllers\Controller;

8

9 class UpdatePasswordController extends Controller

10 {

11 /**

12 * Update the password for the user.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function update(Request $request)

18 {

19 // Validate the new password length...

Hashing 330

20

21 $request->user()->fill([

22 'password' => Hash::make($request->newPassword)

23])->save();

24 }

25 }

Verifying A Password Against A Hash

The check method allows you to verify that a given plain-text string corresponds to a given hash.
However, if you are using the LoginController included with Laravel, you will probably not need
to use this directly, as this controller automatically calls this method:

1 if (Hash::check('plain-text', $hashedPassword)) {

2 // The passwords match...

3 }

Checking If A Password Needs To Be Rehashed

The needsRehash function allows you to determine if the work factor used by the hasher has changed
since the password was hashed:

1 if (Hash::needsRehash($hashed)) {

2 $hashed = Hash::make('plain-text');

3 }

Event Broadcasting
• Introduction A> - Configuration A> - Driver Prerequisites
• Concept Overview A> - Using Example Application
• Defining Broadcast Events A> - Broadcast Name A> - Broadcast Data A> - Broadcast Queue
• Authorizing Channels A> - Defining Authorization Routes A> - Defining Authorization
Callbacks

• Broadcasting Events A> - Only To Others
• Receiving Broadcasts A> - Installing Laravel Echo A> - Listening For Events A> - Leaving A
Channel A> - Namespaces

• Presence Channels A> - Authorizing Presence Channels A> - Joining Presence Channels A> -
Broadcasting To Presence Channels

• Notifications

Introduction

In many modern web applications, WebSockets are used to implement realtime, live-updating
user interfaces. When some data is updated on the server, a message is typically sent over a
WebSocket connection to be handled by the client. This provides a more robust, efficient alternative
to continually polling your application for changes.

To assist you in building these types of applications, Laravel makes it easy to “broadcast” your events
over a WebSocket connection. Broadcasting your Laravel events allows you to share the same event
names between your server-side code and your client-side JavaScript application.

{tip} Before diving into event broadcasting, make sure you have read all of the
documentation regarding Laravel events and listeners.

Configuration

All of your application’s event broadcasting configuration is stored in the config/broadcasting.php
configuration file. Laravel supports several broadcast drivers out of the box: Pusher²⁰⁹, Redis, and
a log driver for local development and debugging. Additionally, a null driver is included which
allows you to totally disable broadcasting. A configuration example is included for each of these
drivers in the config/broadcasting.php configuration file.

²⁰⁹https://pusher.com

https://pusher.com/
https://pusher.com/

Event Broadcasting 332

Broadcast Service Provider

Before broadcasting any events, youwill first need to register the App\Providers\BroadcastServiceProvider.
In fresh Laravel applications, you only need to uncomment this provider in the providers array
of your config/app.php configuration file. This provider will allow you to register the broadcast
authorization routes and callbacks.

CSRF Token

Laravel Echo will need access to the current session’s CSRF token. If available, Echo will pull the to-
ken from the Laravel.csrfToken JavaScript object. This object is defined in the resources/views/lay-
outs/app.blade.php layout that is created if you run the make:auth Artisan command. If you are
not using this layout, you may define a meta tag in your application’s head HTML element:

1 <meta name="csrf-token" content="{{ csrf_token() }}">

Driver Prerequisites

Pusher

If you are broadcasting your events over Pusher²¹⁰, you should install the Pusher PHP SDK using
the Composer package manager:

1 composer require pusher/pusher-php-server

Next, you should configure your Pusher credentials in the config/broadcasting.php configuration
file. An example Pusher configuration is already included in this file, allowing you to quickly
specify your Pusher key, secret, and application ID. The config/broadcasting.php file’s pusher
configuration also allows you to specify additional options that are supported by Pusher, such as
the cluster:

1 'options' => [

2 'cluster' => 'eu',

3 'encrypted' => true

4],

²¹⁰https://pusher.com

https://pusher.com/
https://pusher.com/

Event Broadcasting 333

When using Pusher and Laravel Echo, you should specify pusher as your desired broadcaster when
instantiating an Echo instance:

1 import Echo from "laravel-echo"

2

3 window.Echo = new Echo({

4 broadcaster: 'pusher',

5 key: 'your-pusher-key'

6 });

Redis

If you are using the Redis broadcaster, you should install the Predis library:

1 composer require predis/predis

The Redis broadcaster will broadcast messages using Redis’ pub / sub feature; however, you will
need to pair this with a WebSocket server that can receive the messages from Redis and broadcast
them to your WebSocket channels.

When the Redis broadcaster publishes an event, it will be published on the event’s specified channel
names and the payload will be a JSON encoded string containing the event name, a data payload,
and the user that generated the event’s socket ID (if applicable).

Socket.IO

If you are going to pair the Redis broadcaster with a Socket.IO server, you will need to include the
Socket.IO JavaScript client library in your application’s head HTML element:

1 <script src="https://cdn.socket.io/socket.io-1.4.5.js"></script>

Next, you will need to instantiate Echo with the socket.io connector and a host. For example, if
your application and socket server are running on the app.dev domain you should instantiate Echo
like so:

Event Broadcasting 334

1 import Echo from "laravel-echo"

2

3 window.Echo = new Echo({

4 broadcaster: 'socket.io',

5 host: 'http://app.dev:6001'

6 });

Finally, you will need to run a compatible Socket.IO server. Laravel does not include a Socket.IO
server implementation; however, a community driven Socket.IO server is currently maintained at
the tlaverdure/laravel-echo-server²¹¹ GitHub repository.

Queue Prerequisites

Before broadcasting events, you will also need to configure and run a queue listener. All event
broadcasting is done via queued jobs so that the response time of your application is not seriously
affected.

Concept Overview

Laravel’s event broadcasting allows you to broadcast your server-side Laravel events to your client-
side JavaScript application using a driver-based approach to WebSockets. Currently, Laravel ships
with Pusher²¹² and Redis drivers. The events may be easily consumed on the client-side using the
Laravel Echo Javascript package.

Events are broadcast over “channels”, which may be specified as public or private. Any visitor to
your application may subscribe to a public channel without any authentication or authorization;
however, in order to subscribe to a private channel, a user must be authenticated and authorized to
listen on that channel.

Using Example Application

Before diving into each component of event broadcasting, let’s take a high level overview using an
e-commerce store as an example. We won’t discuss the details of configuring Pusher²¹³ or Laravel
Echo since that will be discussed in detail in other sections of this documentation.

In our application, let’s assume we have a page that allows users to view the shipping status for
their orders. Let’s also assume that a ShippingStatusUpdated event is fired when a shipping status
update is processed by the application:

²¹¹https://github.com/tlaverdure/laravel-echo-server
²¹²https://pusher.com
²¹³https://pusher.com

https://github.com/tlaverdure/laravel-echo-server
https://pusher.com/
https://pusher.com/
https://github.com/tlaverdure/laravel-echo-server
https://pusher.com/
https://pusher.com/

Event Broadcasting 335

1 event(new ShippingStatusUpdated($update));

The ShouldBroadcast Interface

When a user is viewing one of their orders, we don’t want them to have to refresh the page to view
status updates. Instead, we want to broadcast the updates to the application as they are created. So,
we need to mark the ShippingStatusUpdated event with the ShouldBroadcast interface. This will
instruct Laravel to broadcast the event when it is fired:

1 <?php

2

3 namespace App\Events;

4

5 use Illuminate\Broadcasting\Channel;

6 use Illuminate\Queue\SerializesModels;

7 use Illuminate\Broadcasting\PrivateChannel;

8 use Illuminate\Broadcasting\PresenceChannel;

9 use Illuminate\Broadcasting\InteractsWithSockets;

10 use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

11

12 class ShippingStatusUpdated implements ShouldBroadcast

13 {

14 //

15 }

The ShouldBroadcast interface requires our event to define a broadcastOn method. This method
is responsible for returning the channels that the event should broadcast on. An empty stub of this
method is already defined on generated event classes, so we only need to fill in its details. We only
want the creator of the order to be able to view status updates, so we will broadcast the event on a
private channel that is tied to the order:

1 /**

2 * Get the channels the event should broadcast on.

3 *

4 * @return array

5 */

6 public function broadcastOn()

7 {

Event Broadcasting 336

8 return new PrivateChannel('order.'.$this->update->order_id);

9 }

Authorizing Channels

Remember, users must be authorized to listen on private channels. We may define our channel
authorization rules in the bootmethod of the BroadcastServiceProvider. In this example, we need
to verify that any user attempting to listen on the private order.1 channel is actually the creator of
the order:

1 Broadcast::channel('order.*', function ($user, $orderId) {

2 return $user->id === Order::findOrNew($orderId)->user_id;

3 });

The channel method accepts two arguments: the name of the channel and a callback which returns
true or false indicating whether the user is authorized to listen on the channel.

All authorization callbacks receive the currently authenticated user as their first argument and any
additional wildcard parameters as their subsequent arguments. In this example, we are using the *
character to indicate that the “ID” portion of the channel name is a wildcard.

Listening For Event Broadcasts

Next, all that remains is to listen for the event in our JavaScript application. We can do this using
Laravel Echo. First, we’ll use the privatemethod to subscribe to the private channel. Then, we may
use the listenmethod to listen for the ShippingStatusUpdated event. By default, all of the event’s
public properties will be included on the broadcast event:

1 Echo.private('order.' + orderId)

2 .listen('ShippingStatusUpdated', (e) => {

3 console.log(e.update);

4 });

Defining Broadcast Events

To informLaravel that a given event should be broadcast, implement the Illuminate\Contracts\Broadcasting\ShouldBroadcast
interface on the event class. This interface is already imported into all event classes generated by

Event Broadcasting 337

the framework so you may easily add it to any of your events.

The ShouldBroadcast interface requires you to implement a single method: broadcastOn. The
broadcastOn method should return a channel or array of channels that the event should broadcast
on. The channels should be instances of Channel, PrivateChannel, or PresenceChannel. Instances
of Channel represent public channels that any user may subscribe to, while PrivateChannels and
PresenceChannels represent private channels that require channel authorization:

1 <?php

2

3 namespace App\Events;

4

5 use Illuminate\Broadcasting\Channel;

6 use Illuminate\Queue\SerializesModels;

7 use Illuminate\Broadcasting\PrivateChannel;

8 use Illuminate\Broadcasting\PresenceChannel;

9 use Illuminate\Broadcasting\InteractsWithSockets;

10 use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

11

12 class ServerCreated implements ShouldBroadcast

13 {

14 use SerializesModels;

15

16 public $user;

17

18 /**

19 * Create a new event instance.

20 *

21 * @return void

22 */

23 public function __construct(User $user)

24 {

25 $this->user = $user;

26 }

27

28 /**

29 * Get the channels the event should broadcast on.

30 *

31 * @return Channel|array

32 */

33 public function broadcastOn()

34 {

35 return new PrivateChannel('user.'.$this->user->id);

36 }

Event Broadcasting 338

37 }

Then, you only need to fire the event as you normally would. Once the event has been fired, a
queued job will automatically broadcast the event over your specified broadcast driver.

Broadcast Name

By default, Laravel will broadcast the event using the event’s class name. However, you may
customize the broadcast name by defining a broadcastAs method on the event:

1 /**

2 * The event's broadcast name.

3 *

4 * @return string

5 */

6 public function broadcastAs()

7 {

8 return 'server.created';

9 }

Broadcast Data

When an event is broadcast, all of its public properties are automatically serialized and broadcast as
the event’s payload, allowing you to access any of its public data from your JavaScript application.
So, for example, if your event has a single public $user property that contains an Eloquent model,
the event’s broadcast payload would be:

1 {

2 "user": {

3 "id": 1,

4 "name": "Patrick Stewart"

5 ...

6 }

7 }

Event Broadcasting 339

However, if you wish to have more fine-grained control over your broadcast payload, you may add
a broadcastWith method to your event. This method should return the array of data that you wish
to broadcast as the event payload:

1 /**

2 * Get the data to broadcast.

3 *

4 * @return array

5 */

6 public function broadcastWith()

7 {

8 return ['id' => $this->user->id];

9 }

Broadcast Queue

By default, each broadcast event is placed on the default queue for the default queue connection
specified in your queue.php configuration file. Youmay customize the queue used by the broadcaster
by defining a broadcastQueue property on your event class. This property should specify the name
of the queue you wish to use when broadcasting:

1 /**

2 * The name of the queue on which to place the event.

3 *

4 * @var string

5 */

6 public $broadcastQueue = 'your-queue-name';

Authorizing Channels

Private channels require you to authorize that the currently authenticated user can actually listen
on the channel. This is accomplished by making an HTTP request to your Laravel application with
the channel name and allowing your application to determine if the user can listen on that channel.
When using Laravel Echo, the HTTP request to authorize subscriptions to private channels will be
made automatically; however, you do need to define the proper routes to respond to these requests.

Event Broadcasting 340

Defining Authorization Routes

Thankfully, Laravel makes it easy to define the routes to respond to channel authorization requests.
In the BroadcastServiceProvider included with your Laravel application, you will see a call to
the Broadcast::routesmethod. This method will register the /broadcasting/auth route to handle
authorization requests:

1 Broadcast::routes();

The Broadcast::routes method will automatically place its routes within the web middleware
group; however, you may pass an array of route attributes to the method if you would like to
customize the assigned attributes:

1 Broadcast::routes($attributes);

Defining Authorization Callbacks

Next, we need to define the logic that will actually perform the channel authorization. Like defining
the authorization routes, this is also done in the boot method of the BroadcastServiceProvider.
In this method, you may use the Broadcast::channel method to register channel authorization
callbacks:

1 Broadcast::channel('order.*', function ($user, $orderId) {

2 return $user->id === Order::findOrNew($orderId)->user_id;

3 });

The channel method accepts two arguments: the name of the channel and a callback which returns
true or false indicating whether the user is authorized to listen on the channel.

All authorization callbacks receive the currently authenticated user as their first argument and any
additional wildcard parameters as their subsequent arguments. In this example, we are using the *
character to indicate that the “ID” portion of the channel name is a wildcard.

Broadcasting Events

Once you have defined an event and marked it with the ShouldBroadcast interface, you only need
to fire the event using the event function. The event dispatcher will notice that the event is marked

Event Broadcasting 341

with the ShouldBroadcast interface and will queue the event for broadcasting:

1 event(new ShippingStatusUpdated($update));

Only To Others

When building an application that utilizes event broadcasting, youmay substitute the event function
with the broadcast function. Like the event function, the broadcast function dispatches the event
to your server-side listeners:

1 broadcast(new ShippingStatusUpdated($update));

However, the broadcast function also exposes the toOthers method which allows you to exclude
the current user from the broadcast’s recipients:

1 broadcast(new ShippingStatusUpdated($update))->toOthers();

To better understand when you may want to use the toOthers method, let’s imagine a task list
application where a user may create a new task by entering a task name. To create a task, your
application might make a request to a /task end-point which broadcasts the task’s creation and
returns a JSON representation of the new task. When your JavaScript application receives the
response from the end-point, it might directly insert the new task into its task list like so:

1 this.$http.post('/task', task)

2 .then((response) => {

3 this.tasks.push(response.data);

4 });

However, remember that we also broadcast the task’s creation. If your JavaScript application is
listening for this event in order to add tasks to the task list, you will have duplicate tasks in your
list: one from the end-point and one from the broadcast.

You may solve this by using the toOthers method to instruct the broadcaster to not broadcast the
event to the current user.

Event Broadcasting 342

Configuration

When you initialize a Laravel Echo instance, a socket ID is assigned to the connection. If you are
using Vue²¹⁴ and Vue Resource, the socket ID will automatically be attached to every outgoing
request as a X-Socket-ID header. Then, when you call the toOthers method, Laravel will extract
the socket ID from the header and instruct the broadcaster to not broadcast to any connections with
that socket ID.

If you are not using Vue and Vue Resource, you will need to manually configure your JavaScript
application to send the X-Socket-ID header. Youmay retrieve the socket ID using the Echo.socketId
method:

1 var socketId = Echo.socketId();

Receiving Broadcasts

Installing Laravel Echo

Laravel Echo is a JavaScript library that makes it painless to subscribe to channels and listen for
events broadcast by Laravel. You may install Echo via the NPM package manager. In this example,
we will also install the pusher-js package since we will be using the Pusher broadcaster:

1 npm install --save laravel-echo pusher-js

Once Echo is installed, you are ready to create a fresh Echo instance in your application’s JavaScript.
A great place to do this is at the bottom of the resources/assets/js/bootstrap.js file that is
included with the Laravel framework:

1 import Echo from "laravel-echo"

2

3 window.Echo = new Echo({

4 broadcaster: 'pusher',

5 key: 'your-pusher-key'

6 });

²¹⁴https://vuejs.org

https://vuejs.org/
https://vuejs.org/

Event Broadcasting 343

When creating an Echo instance that uses the pusher connector, you may also specify a cluster as
well as whether the connection should be encrypted:

1 window.Echo = new Echo({

2 broadcaster: 'pusher',

3 key: 'your-pusher-key',

4 cluster: 'eu',

5 encrypted: true

6 });

Listening For Events

Once you have installed and instantiated Echo, you are ready to start listening for event broadcasts.
First, use the channel method to retrieve an instance of a channel, then call the listen method to
listen for a specified event:

1 Echo.channel('orders')

2 .listen('OrderShipped', (e) => {

3 console.log(e.order.name);

4 });

If you would like to listen for events on a private channel, use the privatemethod instead. You may
continue to chain calls to the listen method to listen for multiple events on a single channel:

1 Echo.private('orders')

2 .listen(...)

3 .listen(...)

4 .listen(...);

Leaving A Channel

To leave a channel, you may call the leave method on your Echo instance:

Event Broadcasting 344

1 Echo.leave('orders');

Namespaces

Youmay have noticed in the examples above that we did not specify the full namespace for the event
classes. This is because Echo will automatically assume the events are located in the App\Events

namespace. However, you may configure the root namespace when you instantiate Echo by passing
a namespace configuration option:

1 window.Echo = new Echo({

2 broadcaster: 'pusher',

3 key: 'your-pusher-key',

4 namespace: 'App.Other.Namespace'

5 });

Alternatively, you may prefix event classes with a .when subscribing to them using Echo. This will
allow you to always specify the fully-qualified class name:

1 Echo.channel('orders')

2 .listen('.Namespace.Event.Class', (e) => {

3 //

4 });

Presence Channels

Presence channels build on the security of private channels while exposing the additional feature of
awareness of who is subscribed to the channel. This makes it easy to build powerful, collaborative
application features such as notifying users when another user is viewing the same page.

Authorizing Presence Channels

All presence channels are also private channels; therefore, users must be authorized to access them.
However, when defining authorization callbacks for presence channels, you will not return true if
the user is authorized to join the channel. Instead, you should return an array of data about the user.

Event Broadcasting 345

The data returned by the authorization callback will be made available to the presence channel event
listeners in your JavaScript application. If the user is not authorized to join the presence channel,
you should return false or null:

1 Broadcast::channel('chat.*', function ($user, $roomId) {

2 if ($user->canJoinRoom($roomId)) {

3 return ['id' => $user->id, 'name' => $user->name];

4 }

5 });

Joining Presence Channels

To join a presence channel, you may use Echo’s join method. The join method will return a
PresenceChannel implementation which, along with exposing the listen method, allows you to
subscribe to the here, joining, and leaving events.

1 Echo.join('chat.' + roomId)

2 .here((users) => {

3 //

4 })

5 .joining((user) => {

6 console.log(user.name);

7 })

8 .leaving((user) => {

9 console.log(user.name);

10 });

The here callback will be executed immediately once the channel is joined successfully, and will
receive an array containing the user information for all of the other users currently subscribed to
the channel. The joining method will be executed when a new user joins a channel, while the
leaving method will be executed when a user leaves the channel.

Broadcasting To Presence Channels

Presence channels may receive events just like public or private channels. Using the example of a
chatroom, we may want to broadcast NewMessage events to the room’s presence channel. To do so,
we’ll return an instance of PresenceChannel from the event’s broadcastOn method:

Event Broadcasting 346

1 /**

2 * Get the channels the event should broadcast on.

3 *

4 * @return Channel|array

5 */

6 public function broadcastOn()

7 {

8 return new PresenceChannel('room.'.$this->message->room_id);

9 }

Like public or private events, presence channel events may be broadcast using the broadcast

function. As with other events, you may use the toOthers method to exclude the current user from
receiving the broadcast:

1 broadcast(new NewMessage($message));

2

3 broadcast(new NewMessage($message))->toOthers();

You may listen for the join event via Echo’s listen method:

1 Echo.join('chat.' + roomId)

2 .here(...)

3 .joining(...)

4 .leaving(...)

5 .listen('NewMessage', (e) => {

6 //

7 });

Notifications

By pairing event broadcasting with notifications, your JavaScript application may receive new
notifications as they occur without needing to refresh the page. First, be sure to read over the
documentation on using the broadcast notification channel.

Once you have configured a notification to use the broadcast channel, you may listen for the
broadcast events using Echo’s notification method. Remember, the channel name should match
the class name of the entity receiving the notifications:

Event Broadcasting 347

1 Echo.private('App.User.' + userId)

2 .notification((notification) => {

3 console.log(notification.type);

4 });

In this example, all notifications sent to App\User instances via the broadcast channel would be
received by the callback. A channel authorization callback for the App.User.* channel is included
in the default BroadcastServiceProvider that ships with the Laravel framework.

Cache
• Configuration A> - Driver Prerequisites
• Cache Usage A> - Obtaining A Cache Instance A> - Retrieving Items From The Cache A> -
Storing Items In The Cache A> - Removing Items From The Cache A> - The Cache Helper

• Cache Tags A> - Storing Tagged Cache Items A> - Accessing Tagged Cache Items A> -
Removing Tagged Cache Items

• Adding Custom Cache Drivers A> - Writing The Driver A> - Registering The Driver
• Events

Configuration

Laravel provides an expressive, unified API for various caching backends. The cache configuration is
located at config/cache.php. In this file youmay specify which cache driver you would like used by
default throughout your application. Laravel supports popular caching backends like Memcached²¹⁵
and Redis²¹⁶ out of the box.

The cache configuration file also contains various other options, which are documented within
the file, so make sure to read over these options. By default, Laravel is configured to use the file
cache driver, which stores the serialized, cached objects in the filesystem. For larger applications,
it is recommended that you use a more robust driver such as Memcached or Redis. You may even
configure multiple cache configurations for the same driver.

Driver Prerequisites

Database

When using the database cache driver, you will need to setup a table to contain the cache items.
You’ll find an example Schema declaration for the table below:

1 Schema::create('cache', function ($table) {

2 $table->string('key')->unique();

3 $table->text('value');

4 $table->integer('expiration');

²¹⁵https://memcached.org
²¹⁶http://redis.io

https://memcached.org/
http://redis.io/
https://memcached.org/
http://redis.io/

Cache 349

5 });

{tip} You may also use the php artisan cache:table Artisan command to generate a
migration with the proper schema.

Memcached

Using the Memcached driver requires the Memcached PECL package²¹⁷ to be installed. You may list
all of your Memcached servers in the config/cache.php configuration file:

1 'memcached' => [

2 [

3 'host' => '127.0.0.1',

4 'port' => 11211,

5 'weight' => 100

6],

7],

You may also set the host option to a UNIX socket path. If you do this, the port option should be
set to 0:

1 'memcached' => [

2 [

3 'host' => '/var/run/memcached/memcached.sock',

4 'port' => 0,

5 'weight' => 100

6],

7],

Redis

Before using a Redis cache with Laravel, you will need to install the predis/predis package (∼1.0)
via Composer.

For more information on configuring Redis, consult its Laravel documentation page.

²¹⁷https://pecl.php.net/package/memcached

https://pecl.php.net/package/memcached
https://pecl.php.net/package/memcached

Cache 350

Cache Usage

Obtaining A Cache Instance

The Illuminate\Contracts\Cache\Factory and Illuminate\Contracts\Cache\Repository con-
tracts provide access to Laravel’s cache services. The Factory contract provides access to all cache
drivers defined for your application. The Repository contract is typically an implementation of the
default cache driver for your application as specified by your cache configuration file.

However, you may also use the Cache facade, which is what we will use throughout this documen-
tation. The Cache facade provides convenient, terse access to the underlying implementations of the
Laravel cache contracts:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\Cache;

6

7 class UserController extends Controller

8 {

9 /**

10 * Show a list of all users of the application.

11 *

12 * @return Response

13 */

14 public function index()

15 {

16 $value = Cache::get('key');

17

18 //

19 }

20 }

Accessing Multiple Cache Stores

Using the Cache facade, you may access various cache stores via the store method. The key passed
to the storemethod should correspond to one of the stores listed in the stores configuration array
in your cache configuration file:

Cache 351

1 $value = Cache::store('file')->get('foo');

2

3 Cache::store('redis')->put('bar', 'baz', 10);

Retrieving Items From The Cache

The get method on the Cache facade is used to retrieve items from the cache. If the item does not
exist in the cache, null will be returned. If you wish, you may pass a second argument to the get
method specifying the default value you wish to be returned if the item doesn’t exist:

1 $value = Cache::get('key');

2

3 $value = Cache::get('key', 'default');

You may even pass a Closure as the default value. The result of the Closure will be returned if
the specified item does not exist in the cache. Passing a Closure allows you to defer the retrieval of
default values from a database or other external service:

1 $value = Cache::get('key', function () {

2 return DB::table(...)->get();

3 });

Checking For Item Existence

The has method may be used to determine if an item exists in the cache:

1 if (Cache::has('key')) {

2 //

3 }

Incrementing / Decrementing Values

The increment and decrement methods may be used to adjust the value of integer items in the
cache. Both of these methods accept an optional second argument indicating the amount by which

Cache 352

to increment or decrement the item’s value:

1 Cache::increment('key');

2 Cache::increment('key', $amount);

3 Cache::decrement('key');

4 Cache::decrement('key', $amount);

Retrieve & Store

Sometimes you may wish to retrieve an item from the cache, but also store a default value if the
requested item doesn’t exist. For example, you may wish to retrieve all users from the cache or, if
they don’t exist, retrieve them from the database and add them to the cache. You may do this using
the Cache::remember method:

1 $value = Cache::remember('users', $minutes, function () {

2 return DB::table('users')->get();

3 });

If the item does not exist in the cache, the Closure passed to the remember method will be executed
and its result will be placed in the cache.

Retrieve & Delete

If you need to retrieve an item from the cache and then delete the item, you may use the pull

method. Like the get method, null will be returned if the item does not exist in the cache:

1 $value = Cache::pull('key');

Storing Items In The Cache

You may use the put method on the Cache facade to store items in the cache. When you place an
item in the cache, you need to specify the number of minutes for which the value should be cached:

Cache 353

1 Cache::put('key', 'value', $minutes);

Instead of passing the number of minutes as an integer, you may also pass a DateTime instance
representing the expiration time of the cached item:

1 $expiresAt = Carbon::now()->addMinutes(10);

2

3 Cache::put('key', 'value', $expiresAt);

Store If Not Present

The add method will only add the item to the cache if it does not already exist in the cache store.
The method will return true if the item is actually added to the cache. Otherwise, the method will
return false:

1 Cache::add('key', 'value', $minutes);

Storing Items Forever

The forever method may be used to store an item in the cache permanently. Since these items will
not expire, they must be manually removed from the cache using the forget method:

1 Cache::forever('key', 'value');

{tip} If you are using the Memcached driver, items that are stored “forever” may be
removed when the cache reaches its size limit.

Removing Items From The Cache

You may remove items from the cache using the forget method:

Cache 354

1 Cache::forget('key');

You may clear the entire cache using the flush method:

1 Cache::flush();

{note} Flushing the cache does not respect the cache prefix and will remove all entries
from the cache. Consider this carefully when clearing a cache which is shared by other
applications.

The Cache Helper

In addition to using the Cache facade or cache contract, you may also use the global cache function
to retrieve and store data via the cache. When the cache function is called with a single, string
argument, it will return the value of the given key:

1 $value = cache('key');

If you provide an array of key / value pairs and an expiration time to the function, it will store values
in the cache for the specified duration:

1 cache(['key' => 'value'], $minutes);

2

3 cache(['key' => 'value'], Carbon::now()->addSeconds(10));

{tip}When testing call to the global cache function, youmay use the Cache::shouldReceive
method just as if you were testing a facade.

Cache Tags

{note} Cache tags are not supported when using the file or database cache drivers.
Furthermore, when using multiple tags with caches that are stored “forever”, perfor-

Cache 355

mance will be best with a driver such as memcached, which automatically purges stale
records.

Storing Tagged Cache Items

Cache tags allow you to tag related items in the cache and then flush all cached values that have
been assigned a given tag. You may access a tagged cache by passing in an ordered array of tag
names. For example, let’s access a tagged cache and put value in the cache:

1 Cache::tags(['people', 'artists'])->put('John', $john, $minutes);

2

3 Cache::tags(['people', 'authors'])->put('Anne', $anne, $minutes);

Accessing Tagged Cache Items

To retrieve a tagged cache item, pass the same ordered list of tags to the tags method and then call
the get method with the key you wish to retrieve:

1 $john = Cache::tags(['people', 'artists'])->get('John');

2

3 $anne = Cache::tags(['people', 'authors'])->get('Anne');

Removing Tagged Cache Items

You may flush all items that are assigned a tag or list of tags. For example, this statement would
remove all caches tagged with either people, authors, or both. So, both Anne and John would be
removed from the cache:

1 Cache::tags(['people', 'authors'])->flush();

In contrast, this statement would remove only caches tagged with authors, so Anne would be
removed, but not John:

Cache 356

1 Cache::tags('authors')->flush();

Adding Custom Cache Drivers

Writing The Driver

To create our custom cache driver, we first need to implement the Illuminate\Contracts\Cache\Store
contract contract. So, a MongoDB cache implementation would look something like this:

1 <?php

2

3 namespace App\Extensions;

4

5 use Illuminate\Contracts\Cache\Store;

6

7 class MongoStore implements Store

8 {

9 public function get($key) {}

10 public function many(array $keys);

11 public function put($key, $value, $minutes) {}

12 public function putMany(array $values, $minutes);

13 public function increment($key, $value = 1) {}

14 public function decrement($key, $value = 1) {}

15 public function forever($key, $value) {}

16 public function forget($key) {}

17 public function flush() {}

18 public function getPrefix() {}

19 }

We just need to implement each of these methods using a MongoDB connection. For an example of
how to implement each of these methods, take a look at the Illuminate\Cache\MemcachedStore in
the framework source code. Once our implementation is complete, we can finish our custom driver
registration.

1 Cache::extend('mongo', function ($app) {

Cache 357

2 return Cache::repository(new MongoStore);

3 });

{tip} If you’re wondering where to put your custom cache driver code, you could create
an Extensions namespace within your app directory. However, keep in mind that
Laravel does not have a rigid application structure and you are free to organize your
application according to your preferences.

Registering The Driver

To register the custom cache driver with Laravel, we will use the extendmethod on the Cache facade.
The call to Cache::extend could be done in the bootmethod of the default App\Providers\AppServiceProvider
that ships with fresh Laravel applications, or you may create your own service provider to house
the extension - just don’t forget to register the provider in the config/app.php provider array:

1 <?php

2

3 namespace App\Providers;

4

5 use App\Extensions\MongoStore;

6 use Illuminate\Support\Facades\Cache;

7 use Illuminate\Support\ServiceProvider;

8

9 class CacheServiceProvider extends ServiceProvider

10 {

11 /**

12 * Perform post-registration booting of services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Cache::extend('mongo', function ($app) {

19 return Cache::repository(new MongoStore);

20 });

21 }

22

23 /**

24 * Register bindings in the container.

25 *

26 * @return void

Cache 358

27 */

28 public function register()

29 {

30 //

31 }

32 }

The first argument passed to the extend method is the name of the driver. This will correspond to
your driver option in the config/cache.php configuration file. The second argument is a Closure
that should return an Illuminate\Cache\Repository instance. The Closure will be passed an $app

instance, which is an instance of the service container.

Once your extension is registered, simply update your config/cache.php configuration file’s driver
option to the name of your extension.

Events

To execute code on every cache operation, youmay listen for the events fired by the cache. Typically,
you should place these event listeners within your EventServiceProvider:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Cache\Events\CacheHit' => [

8 'App\Listeners\LogCacheHit',

9],

10

11 'Illuminate\Cache\Events\CacheMissed' => [

12 'App\Listeners\LogCacheMissed',

13],

14

15 'Illuminate\Cache\Events\KeyForgotten' => [

16 'App\Listeners\LogKeyForgotten',

17],

18

19 'Illuminate\Cache\Events\KeyWritten' => [

20 'App\Listeners\LogKeyWritten',

21],

Cache 359

22];

Events
• Introduction
• Registering Events & Listeners A> - Generating Events & Listeners A> - Manually Registering
Events

• Defining Events
• Defining Listeners
• Queued Event Listeners A> - Manually Accessing The Queue
• Firing Events
• Event Subscribers A> - Writing Event Subscribers A> - Registering Event Subscribers

Introduction

Laravel’s events provides a simple observer implementation, allowing you to subscribe and listen for
various events that occur in your application. Event classes are typically stored in the app/Events
directory, while their listeners are stored in app/Listeners. Don’t worry if you don’t see these
directories in your application, since they will be created for you as you generate events and listeners
using Artisan console commands.

Events serve as a great way to decouple various aspects of your application, since a single event can
have multiple listeners that do not depend on each other. For example, you may wish to send a Slack
notification to your user each time an order has shipped. Instead of coupling your order processing
code to your Slack notification code, you can simply raise an OrderShipped event, which a listener
can receive and transform into a Slack notification.

Registering Events & Listeners

The EventServiceProvider included with your Laravel application provides a convenient place to
register all of your application’s event listeners. The listen property contains an array of all events
(keys) and their listeners (values). Of course, you may add as many events to this array as your
application requires. For example, let’s add a OrderShipped event:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

Events 361

7 'App\Events\OrderShipped' => [

8 'App\Listeners\SendShipmentNotification',

9],

10];

Generating Events & Listeners

Of course, manually creating the files for each event and listener is cumbersome. Instead, simply
add listeners and events to your EventServiceProvider and use the event:generate command.
This command will generate any events or listeners that are listed in your EventServiceProvider.
Of course, events and listeners that already exist will be left untouched:

1 php artisan event:generate

Manually Registering Events

Typically, events should be registered via the EventServiceProvider $listen array; however, you
may also register Closure based eventsmanually in the bootmethod of your EventServiceProvider:

1 /**

2 * Register any other events for your application.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 parent::boot();

9

10 Event::listen('event.name', function ($foo, $bar) {

11 //

12 });

13 }

Events 362

Wildcard Event Listeners

You may even register listeners using the * as a wildcard parameter, allowing you to catch multiple
events on the same listener. Wildcard listeners receive the entire event data array as a single
argument:

1 Event::listen('event.*', function (array $data) {

2 //

3 });

Defining Events

An event class is simply a data container which holds the information related to the event. For
example, let’s assume our generated OrderShipped event receives an Eloquent ORM object:

1 <?php

2

3 namespace App\Events;

4

5 use App\Order;

6 use Illuminate\Queue\SerializesModels;

7

8 class OrderShipped

9 {

10 use SerializesModels;

11

12 public $order;

13

14 /**

15 * Create a new event instance.

16 *

17 * @param Order $order

18 * @return void

19 */

20 public function __construct(Order $order)

21 {

22 $this->order = $order;

23 }

24 }

Events 363

As you can see, this event class contains no logic. It is simply a container for the Order instance that
was purchased. The SerializesModels trait used by the event will gracefully serialize any Eloquent
models if the event object is serialized using PHP’s serialize function.

Defining Listeners

Next, let’s take a look at the listener for our example event. Event listeners receive the event instance
in their handle method. The event:generate command will automatically import the proper event
class and type-hint the event on the handle method. Within the handle method, you may perform
any actions necessary to respond to the event:

1 <?php

2

3 namespace App\Listeners;

4

5 use App\Events\OrderShipped;

6

7 class SendShipmentNotification

8 {

9 /**

10 * Create the event listener.

11 *

12 * @return void

13 */

14 public function __construct()

15 {

16 //

17 }

18

19 /**

20 * Handle the event.

21 *

22 * @param OrderShipped $event

23 * @return void

24 */

25 public function handle(OrderShipped $event)

26 {

27 // Access the order using $event->order...

28 }

29 }

Events 364

{tip} Your event listeners may also type-hint any dependencies they need on their
constructors. All event listeners are resolved via the Laravel service container, so
dependencies will be injected automatically.

Stopping The Propagation Of An Event

Sometimes, you may wish to stop the propagation of an event to other listeners. You may do so by
returning false from your listener’s handle method.

Queued Event Listeners

Queueing listeners can be beneficial if your listener is going to perform a slow task such as sending
an e-mail or making an HTTP request. Before getting started with queued listeners, make sure to
configure your queue and start a queue listener on your server or local development environment.

To specify that a listener should be queued, add the ShouldQueue interface to the listener class.
Listeners generated by the event:generate Artisan command already have this interface imported
into the current namespace, so you can use it immediately:

1 <?php

2

3 namespace App\Listeners;

4

5 use App\Events\OrderShipped;

6 use Illuminate\Contracts\Queue\ShouldQueue;

7

8 class SendShipmentNotification implements ShouldQueue

9 {

10 //

11 }

That’s it! Now, when this listener is called for an event, it will be automatically queued by the event
dispatcher using Laravel’s queue system. If no exceptions are thrown when the listener is executed
by the queue, the queued job will automatically be deleted after it has finished processing.

Manually Accessing The Queue

If you need to manually access the listener’s underlying queue job’s delete and release methods,
you may do so using the Illuminate\Queue\InteractsWithQueue trait. This trait is imported by
default on generated listeners and provides access to these methods:

Events 365

1 <?php

2

3 namespace App\Listeners;

4

5 use App\Events\OrderShipped;

6 use Illuminate\Queue\InteractsWithQueue;

7 use Illuminate\Contracts\Queue\ShouldQueue;

8

9 class SendShipmentNotification implements ShouldQueue

10 {

11 use InteractsWithQueue;

12

13 public function handle(OrderShipped $event)

14 {

15 if (true) {

16 $this->release(30);

17 }

18 }

19 }

Firing Events

To fire an event, you may pass an instance of the event to the event helper. The helper will dispatch
the event to all of its registered listeners. Since the event helper is globally available, you may call
it from anywhere in your application:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Order;

6 use App\Events\OrderShipped;

7 use App\Http\Controllers\Controller;

8

9 class OrderController extends Controller

10 {

11 /**

12 * Ship the given order.

13 *

14 * @param int $orderId

Events 366

15 * @return Response

16 */

17 public function ship($orderId)

18 {

19 $order = Order::findOrFail($orderId);

20

21 // Order shipment logic...

22

23 event(new OrderShipped($order));

24 }

25 }

{tip} When testing, it can be helpful to assert that certain events were fired without
actually triggering their listeners. Laravel’s built-in testing helpers makes it a cinch.

Event Subscribers

Writing Event Subscribers

Event subscribers are classes that may subscribe to multiple events from within the class itself,
allowing you to define several event handlers within a single class. Subscribers should define a
subscribe method, which will be passed an event dispatcher instance. You may call the listen

method on the given dispatcher to register event listeners:

1 <?php

2

3 namespace App\Listeners;

4

5 class UserEventSubscriber

6 {

7 /**

8 * Handle user login events.

9 */

10 public function onUserLogin($event) {}

11

12 /**

13 * Handle user logout events.

14 */

15 public function onUserLogout($event) {}

16

Events 367

17 /**

18 * Register the listeners for the subscriber.

19 *

20 * @param Illuminate\Events\Dispatcher $events

21 */

22 public function subscribe($events)

23 {

24 $events->listen(

25 'Illuminate\Auth\Events\Login',

26 'App\Listeners\UserEventSubscriber@onUserLogin'

27);

28

29 $events->listen(

30 'Illuminate\Auth\Events\Logout',

31 'App\Listeners\UserEventSubscriber@onUserLogout'

32);

33 }

34

35 }

Registering Event Subscribers

After writing the subscriber, you are ready to register it with the event dispatcher. You may register
subscribers using the $subscribe property on the EventServiceProvider. For example, let’s add
the UserEventSubscriber to the list:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Foundation\Support\Providers\EventServiceProvider as ServiceProvi\

6 der;

7

8 class EventServiceProvider extends ServiceProvider

9 {

10 /**

11 * The event listener mappings for the application.

12 *

13 * @var array

14 */

15 protected $listen = [

Events 368

16 //

17];

18

19 /**

20 * The subscriber classes to register.

21 *

22 * @var array

23 */

24 protected $subscribe = [

25 'App\Listeners\UserEventSubscriber',

26];

27 }

Filesystem / Cloud Storage
• Introduction
• Configuration A> - The Public Disk A> - The Local Driver A> - Driver Prerequisites
• Obtaining Disk Instances
• Retrieving Files A> - File URLs A> - File Metadata
• Storing Files A> - File Uploads A> - File Visibility
• Deleting Files
• Directories
• Custom Filesystems

Introduction

Laravel provides a powerful filesystem abstraction thanks to the wonderful Flysystem²¹⁸ PHP
package by Frank de Jonge. The Laravel Flysystem integration provides simple to use drivers
for working with local filesystems, Amazon S3, and Rackspace Cloud Storage. Even better, it’s
amazingly simple to switch between these storage options as the API remains the same for each
system.

Configuration

The filesystem configuration file is located at config/filesystems.php. Within this file you may
configure all of your “disks”. Each disk represents a particular storage driver and storage location.
Example configurations for each supported driver are included in the configuration file. So, simply
modify the configuration to reflect your storage preferences and credentials.

Of course, you may configure as many disks as you like, and may even have multiple disks that use
the same driver.

The Public Disk

The public disk is intended for files that are going to be publicly accessible. By default, the public
disk uses the local driver and stores these files in storage/app/public. To make them accessible
from the web, you should create a symbolic link from public/storage to storage/app/public. This
convention will keep your publicly accessible files in one directory that can be easily shared across
deployments when using zero down-time deployment systems like Envoyer²¹⁹.

To create the symbolic link, you may use the storage:link Artisan command:

²¹⁸https://github.com/thephpleague/flysystem
²¹⁹https://envoyer.io

https://github.com/thephpleague/flysystem
https://envoyer.io/
https://github.com/thephpleague/flysystem
https://envoyer.io/

Filesystem / Cloud Storage 370

1 php artisan storage:link

Of course, once a file has been stored and the symbolic link has been created, you can create a URL
to the files using the asset helper:

1 echo asset('storage/file.txt');

The Local Driver

When using the local driver, all file operations are relative to the root directory defined in your
configuration file. By default, this value is set to the storage/app directory. Therefore, the following
method would store a file in storage/app/file.txt:

1 Storage::disk('local')->put('file.txt', 'Contents');

Driver Prerequisites

Composer Packages

Before using the S3 or Rackspace drivers, you will need to install the appropriate package via
Composer:

• Amazon S3: league/flysystem-aws-s3-v3 ∼1.0

• Rackspace: league/flysystem-rackspace ∼1.0

S3 Driver Configuration

The S3 driver configuration information is located in your config/filesystems.php configuration
file. This file contains an example configuration array for an S3 driver. You are free to modify this
array with your own S3 configuration and credentials.

Filesystem / Cloud Storage 371

FTP Driver Configuration

Laravel’s Flysystem integrations works great with FTP; however, a sample configuration is not
included with the framework’s default filesystems.php configuration file. If you need to configure
a FTP filesystem, you may use the example configuration below:

1 'ftp' => [

2 'driver' => 'ftp',

3 'host' => 'ftp.example.com',

4 'username' => 'your-username',

5 'password' => 'your-password',

6

7 // Optional FTP Settings...

8 // 'port' => 21,

9 // 'root' => '',

10 // 'passive' => true,

11 // 'ssl' => true,

12 // 'timeout' => 30,

13],

Rackspace Driver Configuration

Laravel’s Flysystem integrations works great with Rackspace; however, a sample configuration is not
included with the framework’s default filesystems.php configuration file. If you need to configure
a Rackspace filesystem, you may use the example configuration below:

1 'rackspace' => [

2 'driver' => 'rackspace',

3 'username' => 'your-username',

4 'key' => 'your-key',

5 'container' => 'your-container',

6 'endpoint' => 'https://identity.api.rackspacecloud.com/v2.0/',

7 'region' => 'IAD',

8 'url_type' => 'publicURL',

9],

Filesystem / Cloud Storage 372

Obtaining Disk Instances

The Storage facade may be used to interact with any of your configured disks. For example, you
may use the put method on the facade to store an avatar on the default disk. If you call methods
on the Storage facade without first calling the disk method, the method call will automatically be
passed to the default disk:

1 use Illuminate\Support\Facades\Storage;

2

3 Storage::put('avatars/1', $fileContents);

If your applications interacts with multiple disks, you may use the disk method on the Storage

facade to work with files on a particular disk:

1 Storage::disk('s3')->put('avatars/1', $fileContents);

Retrieving Files

The get method may be used to retrieve the contents of a file. The raw string contents of the file
will be returned by the method. Remember, all file paths should be specified relative to the “root”
location configured for the disk:

1 $contents = Storage::get('file.jpg');

The exists method may be used to determine if a file exists on the disk:

1 $exists = Storage::disk('s3')->exists('file.jpg');

File URLs

When using the local or s3 drivers, you may use the url method to get the URL for the given file.
If you are using the local driver, this will typically just prepend /storage to the given path and

Filesystem / Cloud Storage 373

return a relative URL to the file. If you are using the s3 driver, the fully qualified remote URL will
be returned:

1 use Illuminate\Support\Facades\Storage;

2

3 $url = Storage::url('file1.jpg');

{note} Remember, if you are using the local driver, all files that should be publicly
accessible should be placed in the storage/app/public directory. Furthermore, you
should create a symbolic link at public/storagewhich points to the storage/app/pub-
lic directory.

File Metadata

In addition to reading and writing files, Laravel can also provide information about the files
themselves. For example, the size method may be used to get the size of the file in bytes:

1 use Illuminate\Support\Facades\Storage;

2

3 $size = Storage::size('file1.jpg');

The lastModified method returns the UNIX timestamp of the last time the file was modified:

1 $time = Storage::lastModified('file1.jpg');

Storing Files

The putmethod may be used to store raw file contents on a disk. You may also pass a PHP resource

to the put method, which will use Flysystem’s underlying stream support. Using streams is greatly
recommended when dealing with large files:

1 use Illuminate\Support\Facades\Storage;

2

3 Storage::put('file.jpg', $contents);

Filesystem / Cloud Storage 374

4

5 Storage::put('file.jpg', $resource);

Automatic Streaming

If you would like Laravel to automatically manage streaming a given file to your storage location,
youmay use the putFile or putFileAsmethod. Thismethod accepts either a Illuminate\Http\File
or Illuminate\Http\UploadedFile instance and will automatically stream the file to your desire
location:

1 use Illuminate\Http\File;

2

3 // Automatically generate an UUID for file name...

4 Storage::putFile('photos', new File('/path/to/photo'));

5

6 // Manually specify a file name...

7 Storage::putFileAs('photos', new File('/path/to/photo'), 'photo.jpg');

There are a few important things to note about the putFile method. Note that we only specified a
directory name, not a file name. By default, the putFile method will generate an UUID to serve as
the file name. The path to the file will be returned by the putFilemethod so you can store the path,
including the generated file name, in your database.

The putFile and putFileAsmethods also accept an argument to specify the “visibility” of the stored
file. This is particularly useful if you are storing the file on a cloud disk such as S3 and would like
the file to be publicly accessible:

1 Storage::putFile('photos', new File('/path/to/photo'), 'public');

Prepending & Appending To Files

The prepend and append methods allow you to write to the beginning or end of a file:

Filesystem / Cloud Storage 375

1 Storage::prepend('file.log', 'Prepended Text');

2

3 Storage::append('file.log', 'Appended Text');

Copying & Moving Files

The copy method may be used to copy an existing file to a new location on the disk, while the move
method may be used to rename or move an existing file to a new location:

1 Storage::copy('old/file1.jpg', 'new/file1.jpg');

2

3 Storage::move('old/file1.jpg', 'new/file1.jpg');

File Uploads

In web applications, one of the most common use-cases for storing files is storing user uploaded files
such as profile pictures, photos, and documents. Laravel makes it very easy to store uploaded files
using the store method on an uploaded file instance. Simply call the store method with the path
at which you wish to store the uploaded file:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Http\Request;

6 use App\Http\Controllers\Controller;

7

8 class UserAvatarController extends Controller

9 {

10 /**

11 * Update the avatar for the user.

12 *

13 * @param Request $request

14 * @return Response

15 */

16 public function update(Request $request)

17 {

Filesystem / Cloud Storage 376

18 $path = $request->file('avatar')->store('avatars');

19

20 return $path;

21 }

22 }

There are a few important things to note about this example. Note that we only specified a directory
name, not a file name. By default, the storemethod will generate an UUID to serve as the file name.
The path to the file will be returned by the store method so you can store the path, including the
generated file name, in your database.

You may also call the putFilemethod on the Storage facade to perform the same file manipulation
as the example above:

1 $path = Storage::putFile('avatars', $request->file('avatar'));

Specifying A File Name

If you would not like a file name to be automatically assigned to your stored file, you may use the
storeAs method, which receives the path, the file name, and the (optional) disk as its arguments:

1 $path = $request->file('avatar')->storeAs(

2 'avatars', $request->user()->id

3);

Of course, you may also use the putFileAs method on the Storage facade, which will perform the
same file manipulation as the example above:

1 $path = Storage::putFileAs(

2 'avatars', $request->file('avatar'), $request->user()->id

3);

Filesystem / Cloud Storage 377

Specifying A Disk

By default, this method will use your default disk. If you would like to specify another disk, pass the
disk name as the second argument to the store method:

1 $path = $request->file('avatar')->store(

2 'avatars/'.$request->user()->id, 's3'

3);

File Visibility

In Laravel’s Flysystem integration, “visibility” is an abstraction of file permissions across multiple
platforms. Files may either be declared public or private. When a file is declared public, you are
indicating that the file should generally be accessible to others. For example, when using the S3
driver, you may retrieve URLs for public files.

You can set the visibility when setting the file via the put method:

1 use Illuminate\Support\Facades\Storage;

2

3 Storage::put('file.jpg', $contents, 'public');

If the file has already been stored, its visibility can be retrieved and set via the getVisibility and
setVisibility methods:

1 $visibility = Storage::getVisibility('file.jpg');

2

3 Storage::setVisibility('file.jpg', 'public')

Deleting Files

The delete method accepts a single filename or an array of files to remove from the disk:

Filesystem / Cloud Storage 378

1 use Illuminate\Support\Facades\Storage;

2

3 Storage::delete('file.jpg');

4

5 Storage::delete(['file1.jpg', 'file2.jpg']);

Directories

Get All Files Within A Directory

The filesmethod returns an array of all of the files in a given directory. If you would like to retrieve
a list of all files within a given directory including all sub-directories, you may use the allFiles

method:

1 use Illuminate\Support\Facades\Storage;

2

3 $files = Storage::files($directory);

4

5 $files = Storage::allFiles($directory);

Get All Directories Within A Directory

The directories method returns an array of all the directories within a given directory. Addition-
ally, you may use the allDirectoriesmethod to get a list of all directories within a given directory
and all of its sub-directories:

1 $directories = Storage::directories($directory);

2

3 // Recursive...

4 $directories = Storage::allDirectories($directory);

Create A Directory

The makeDirectory method will create the given directory, including any needed sub-directories:

Filesystem / Cloud Storage 379

1 Storage::makeDirectory($directory);

Delete A Directory

Finally, the deleteDirectory may be used to remove a directory and all of its files:

1 Storage::deleteDirectory($directory);

Custom Filesystems

Laravel’s Flysystem integration provides drivers for several “drivers” out of the box; however,
Flysystem is not limited to these and has adapters for many other storage systems. You can create a
custom driver if you want to use one of these additional adapters in your Laravel application.

In order to set up the custom filesystem you will need to create a service provider such as
DropboxServiceProvider. In the provider’s bootmethod, you may use the Storage facade’s extend
method to define the custom driver:

1 <?php

2

3 namespace App\Providers;

4

5 use Storage;

6 use League\Flysystem\Filesystem;

7 use Dropbox\Client as DropboxClient;

8 use Illuminate\Support\ServiceProvider;

9 use League\Flysystem\Dropbox\DropboxAdapter;

10

11 class DropboxServiceProvider extends ServiceProvider

12 {

13 /**

14 * Perform post-registration booting of services.

15 *

16 * @return void

17 */

18 public function boot()

19 {

Filesystem / Cloud Storage 380

20 Storage::extend('dropbox', function ($app, $config) {

21 $client = new DropboxClient(

22 $config['accessToken'], $config['clientIdentifier']

23);

24

25 return new Filesystem(new DropboxAdapter($client));

26 });

27 }

28

29 /**

30 * Register bindings in the container.

31 *

32 * @return void

33 */

34 public function register()

35 {

36 //

37 }

38 }

The first argument of the extend method is the name of the driver and the second is a Closure
that receives the $app and $config variables. The resolver Closure must return an instance of
League\Flysystem\Filesystem. The $config variable contains the values defined in config/-

filesystems.php for the specified disk.

Once you have created the service provider to register the extension, youmay use the dropbox driver
in your config/filesystems.php configuration file.

Mail
• Introduction A> - Driver Prerequisites
• Generating Mailables
• Writing Mailables A> - Configuring The Sender A> - Configuring The View A> - View Data
A> - Attachments A> - Inline Attachments

• Sending Mail A> - Queueing Mail
• Mail & Local Development
• Events

Introduction

Laravel provides a clean, simple API over the popular SwiftMailer²²⁰ library with drivers for SMTP,
Mailgun, SparkPost, Amazon SES, PHP’s mail function, and sendmail, allowing you to quickly get
started sending mail through a local or cloud based service of your choice.

Driver Prerequisites

The API based drivers such as Mailgun and SparkPost are often simpler and faster than SMTP
servers. If possible, you should use one of these drivers. All of the API drivers require the Guzzle
HTTP library, which may be installed via the Composer package manager:

1 composer require guzzlehttp/guzzle

Mailgun Driver

To use the Mailgun driver, first install Guzzle, then set the driver option in your config/mail.php
configuration file to mailgun. Next, verify that your config/services.php configuration file
contains the following options:

²²⁰http://swiftmailer.org

http://swiftmailer.org/
http://swiftmailer.org/

Mail 382

1 'mailgun' => [

2 'domain' => 'your-mailgun-domain',

3 'secret' => 'your-mailgun-key',

4],

SparkPost Driver

To use the SparkPost driver, first install Guzzle, then set the driver option in your config/mail.php
configuration file to sparkpost. Next, verify that your config/services.php configuration file
contains the following options:

1 'sparkpost' => [

2 'secret' => 'your-sparkpost-key',

3],

SES Driver

To use the Amazon SES driver you must first install the Amazon AWS SDK for PHP. You may install
this library by adding the following line to your composer.json file’s require section and running
the composer update command:

1 "aws/aws-sdk-php": "~3.0"

Next, set the driver option in your config/mail.php configuration file to ses and verify that your
config/services.php configuration file contains the following options:

1 'ses' => [

2 'key' => 'your-ses-key',

3 'secret' => 'your-ses-secret',

4 'region' => 'ses-region', // e.g. us-east-1

5],

Mail 383

Generating Mailables

In Laravel, each type of email sent by your application is represented as a “mailable” class. These
classes are stored in the app/Mail directory. Don’t worry if you don’t see this directory in your
application, since it will be generated for you when you create your first mailable class using the
make:mail command:

1 php artisan make:mail OrderShipped

Writing Mailables

All of a mailable class’ configuration is done in the build method. Within this method, you may
call various methods such as from, subject, view, and attach to configure the email’s presentation
and delivery.

Configuring The Sender

Using The from Method

First, let’s explore configuring the sender of the email. Or, in other words, who the email is going to
be “from”. There are two ways to configure the sender. First, you may use the from method within
your mailable class’ build method:

1 /**

2 * Build the message.

3 *

4 * @return $this

5 */

6 public function build()

7 {

8 return $this->from('example@example.com')

9 ->view('emails.orders.shipped');

10 }

Using A Global from Address

However, if your application uses the same “from” address for all of its emails, it can become
cumbersome to call the from method in each mailable class you generate. Instead, you may specify

Mail 384

a global “from” address in your config/mail.php configuration file. This address will be used if no
other “from” address is specified within the mailable class:

1 'from' => ['address' => 'example@example.com', 'name' => 'App Name'],

Configuring The View

Within a mailable class’ build method, you may use the view method to specify which template
should be used when rendering the email’s contents. Since each email typically uses a Blade template
to render its contents, you have the full power and convenience of the Blade templating engine when
building your email’s HTML:

1 /**

2 * Build the message.

3 *

4 * @return $this

5 */

6 public function build()

7 {

8 return $this->view('emails.orders.shipped');

9 }

{tip} You may wish to create a resources/views/emails directory to house all of your
email templates; however, you are free to place them wherever you wish within your
resources/views directory.

Plain Text Emails

If you would like to define a plain-text version of your email, you may use the textmethod. Like the
view method, the text method accepts a template name which will be used to render the contents
of the email. You are free to define both a HTML and plain-text version of your message:

1 /**

2 * Build the message.

3 *

4 * @return $this

5 */

Mail 385

6 public function build()

7 {

8 return $this->view('emails.orders.shipped')

9 ->text('emails.orders.shipped_plain');

10 }

View Data

Via Public Properties

Typically, you will want to pass some data to your view that you can utilize when rendering the
email’s HTML. There are two ways you may make data available to your view. First, any public
property defined on your mailable class will automatically be made available to the view. So,
for example, you may pass data into your mailable class’ constructor and set that data to public
properties defined on the class:

1 <?php

2

3 namespace App\Mail;

4

5 use App\Order;

6 use Illuminate\Bus\Queueable;

7 use Illuminate\Mail\Mailable;

8 use Illuminate\Queue\SerializesModels;

9

10 class OrderShipped extends Mailable

11 {

12 use Queueable, SerializesModels;

13

14 /**

15 * The order instance.

16 *

17 * @var Order

18 */

19 public $order;

20

21 /**

22 * Create a new message instance.

23 *

24 * @return void

25 */

Mail 386

26 public function __construct(Order $order)

27 {

28 $this->order = $order;

29 }

30

31 /**

32 * Build the message.

33 *

34 * @return $this

35 */

36 public function build()

37 {

38 return $this->view('emails.orders.shipped');

39 }

40 }

Once the data has been set to a public property, it will automatically be available in your view, so
you may access it like you would access any other data in your Blade templates:

1 <div>

2 Price: {{ $order->price }}

3 </div>

Via The with Method:

If you would like to customize the format of your email’s data before it is sent to the template, you
may manually pass your data to the view via the withmethod. Typically, you will still pass data via
the mailable class’ constructor; however, you should set this data to protected or private properties
so the data is not automatically made available to the template. Then, when calling the withmethod,
pass an array of data that you wish to make available to the template:

1 <?php

2

3 namespace App\Mail;

4

5 use App\Order;

6 use Illuminate\Bus\Queueable;

7 use Illuminate\Mail\Mailable;

Mail 387

8 use Illuminate\Queue\SerializesModels;

9

10 class OrderShipped extends Mailable

11 {

12 use Queueable, SerializesModels;

13

14 /**

15 * The order instance.

16 *

17 * @var Order

18 */

19 protected $order;

20

21 /**

22 * Create a new message instance.

23 *

24 * @return void

25 */

26 public function __construct(Order $order)

27 {

28 $this->order = $order;

29 }

30

31 /**

32 * Build the message.

33 *

34 * @return $this

35 */

36 public function build()

37 {

38 return $this->view('emails.orders.shipped')

39 ->with([

40 'orderName' => $this->order->name,

41 'orderPrice' => $this->order->price,

42]);

43 }

44 }

Once the data has been passed to the with method, it will automatically be available in your view,
so you may access it like you would access any other data in your Blade templates:

Mail 388

1 <div>

2 Price: {{ $orderPrice }}

3 </div>

Attachments

To add attachments to an email, use the attach method within the mailable class’ build method.
The attach method accepts the full path to the file as its first argument:

1 /**

2 * Build the message.

3 *

4 * @return $this

5 */

6 public function build()

7 {

8 return $this->view('emails.orders.shipped')

9 ->attach('/path/to/file');

10 }

When attaching files to a message, you may also specify the display name and / or MIME type by
passing an array as the second argument to the attach method:

1 /**

2 * Build the message.

3 *

4 * @return $this

5 */

6 public function build()

7 {

8 return $this->view('emails.orders.shipped')

9 ->attach('/path/to/file', [

10 'as' => 'name.pdf',

11 'mime' => 'application/pdf',

12]);

13 }

Mail 389

Raw Data Attachments

The attachDatamethod may be used to attach a raw string of bytes as an attachment. For example,
you might use this method if you have generated a PDF in memory and want to attach it to the email
without writing it to disk. The attachData method accepts the raw data bytes as its first argument,
the name of the file as its second argument, and an array of options as its third argument:

1 /**

2 * Build the message.

3 *

4 * @return $this

5 */

6 public function build()

7 {

8 return $this->view('emails.orders.shipped')

9 ->attachData($this->pdf, 'name.pdf', [

10 'mime' => 'application/pdf',

11]);

12 }

Inline Attachments

Embedding inline images into your emails is typically cumbersome; however, Laravel provides a
convenient way to attach images to your emails and retrieving the appropriate CID. To embed an
inline image, use the embed method on the $message variable within your email template. Laravel
automatically makes the $message variable available to all of your email templates, so you don’t
need to worry about passing it in manually:

1 <body>

2 Here is an image:

3

4 embed($pathToFile) }}">

5 </body>

Embedding Raw Data Attachments

If you already have a raw data string you wish to embed into an email template, you may use the
embedData method on the $message variable:

Mail 390

1 <body>

2 Here is an image from raw data:

3

4 embedData($data, $name) }}">

5 </body>

Sending Mail

To send a message, use the to method on the Mail facade. The to method accepts an email address,
a user instance, or a collection of users. If you pass an object or collection of objects, the mailer will
automatically use their email and name properties when setting the email recipients, so make sure
these attributes are available on your objects. Once you have specified your recipients, you may pass
an instance of your mailable class to the send method:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Order;

6 use App\Mail\OrderShipped;

7 use Illuminate\Http\Request;

8 use Illuminate\Support\Facades\Mail;

9 use App\Http\Controllers\Controller;

10

11 class OrderController extends Controller

12 {

13 /**

14 * Ship the given order.

15 *

16 * @param Request $request

17 * @param int $orderId

18 * @return Response

19 */

20 public function ship(Request $request, $orderId)

21 {

22 $order = Order::findOrFail($orderId);

23

24 // Ship order...

25

Mail 391

26 Mail::to($request->user())->send(new OrderShipped($order));

27 }

28 }

Of course, you are not limited to just specifying the “to” recipients when sending a message. You are
free to set “to”, “cc”, and “bcc” recipients all within a single, chained method call:

1 Mail::to($request->user())

2 ->cc($moreUsers)

3 ->bcc($evenMoreUsers)

4 ->send(new OrderShipped($order));

Queueing Mail

Queueing A Mail Message

Since sending email messages can drastically lengthen the response time of your application, many
developers choose to queue email messages for background sending. Laravel makes this easy using
its built-in unified queue API. To queue a mail message, use the queue method on the Mail facade
after specifying the message’s recipients:

1 Mail::to($request->user())

2 ->cc($moreUsers)

3 ->bcc($evenMoreUsers)

4 ->queue(new OrderShipped($order));

This method will automatically take care of pushing a job onto the queue so the message is sent in
the background. Of course, you will need to configure your queues before using this feature.

Delayed Message Queueing

If you wish to delay the delivery of a queued email message, you may use the later method. As its
first argument, the later method accepts a DateTime instance indicating when the message should
be sent:

Mail 392

1 $when = Carbon\Carbon::now()->addMinutes(10);

2

3 Mail::to($request->user())

4 ->cc($moreUsers)

5 ->bcc($evenMoreUsers)

6 ->later($when, new OrderShipped($order));

Pushing To Specific Queues

Since all mailable classes generated using the make:mail command make use of the Illumi-

nate\Bus\Queueable trait, you may call the onQueue and onConnection methods on any mailable
class instance, allowing you to specify the connection and queue name for the message:

1 $message = (new OrderShipped($order))

2 ->onConnection('sqs')

3 ->onQueue('emails');

4

5 Mail::to($request->user())

6 ->cc($moreUsers)

7 ->bcc($evenMoreUsers)

8 ->queue($message);

Queueing By Default

If you have mailable classes that you want to always be queued, you may implement the
ShouldQueue contract on the class. Now, even if you call the sendmethodwhenmailing, themailable
will still be queued since it implements the contract:

1 use Illuminate\Contracts\Queue\ShouldQueue;

2

3 class OrderShipped extends Mailable implements ShouldQueue

4 {

5 //

6 }

Mail 393

Mail & Local Development

When developing an application that sends email, you probably don’t want to actually send emails to
live email addresses. Laravel provides several ways to “disable” the actual sending of emails during
local development.

Log Driver

Instead of sending your emails, the logmail driver will write all email messages to your log files for
inspection. For more information on configuring your application per environment, check out the
configuration documentation.

Universal To

Another solution provided by Laravel is to set a universal recipient of all emails sent by the
framework. This way, all the emails generated by your application will be sent to a specific address,
instead of the address actually specified when sending the message. This can be done via the to

option in your config/mail.php configuration file:

1 'to' => [

2 'address' => 'example@example.com',

3 'name' => 'Example'

4],

Mailtrap

Finally, you may use a service like Mailtrap²²¹ and the smtp driver to send your email messages to a
“dummy” mailbox where you may view them in a true email client. This approach has the benefit
of allowing you to actually inspect the final emails in Mailtrap’s message viewer.

Events

Laravel fires an event just before sending mail messages. Remember, this event is fired when the
mail is sent, not when it is queued. You may register an event listener for this event in your
EventServiceProvider:

²²¹https://mailtrap.io

https://mailtrap.io/
https://mailtrap.io/

Mail 394

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Mail\Events\MessageSending' => [

8 'App\Listeners\LogSentMessage',

9],

10];

Notifications
• Introduction
• Creating Notifications
• Sending Notifications A> - Using The Notifiable Trait A> - Using The Notification Facade A>
- Specifying Delivery Channels A> - Queueing Notifications

• Mail Notifications A> - Formatting Mail Messages A> - Customizing The Recipient A> -
Customizing The Subject A> - Customizing The Templates A> - Error Messages

• Database Notifications A> - Prerequisites A> - Formatting Database Notifications A> -
Accessing The Notifications A> - Marking Notifications As Read

• Broadcast Notifications A> - Prerequisites A> - Formatting Broadcast Notifications A> -
Listening For Notifications

• SMS Notifications A> - Prerequisites A> - Formatting SMS Notifications A> - Customizing
The “From” Number A> - Routing SMS Notifications

• Slack Notifications A> - Prerequisites A> - Formatting Slack Notifications A> - Routing Slack
Notifications

• Notification Events
• Custom Channels

Introduction

In addition to support for sending email, Laravel provides support for sending notifications across
a variety of delivery channels, including mail, SMS (via Nexmo²²²), and Slack²²³. Notifications may
also be stored in a database so they may be displayed in your web interface.

Typically, notifications should be short, informational messages that notify users of something that
occurred in your application. For example, if you are writing a billing application, you might send
an “Invoice Paid” notification to your users via the email and SMS channels.

Creating Notifications

In Laravel, each notification is represented by a single class (typically stored in the app/Notifica-
tions directory). Don’t worry if you don’t see this directory in your application, it will be created
for you when you run the make:notification Artisan command:

²²²https://www.nexmo.com/
²²³https://slack.com

https://www.nexmo.com/
https://slack.com/
https://www.nexmo.com/
https://slack.com/

Notifications 396

1 php artisan make:notification InvoicePaid

This command will place a fresh notification class in your app/Notifications directory. Each
notification class contains a via method and a variable number of message building methods (such
as toMail or toDatabase) that convert the notification to a message optimized for that particular
channel.

Sending Notifications

Using The Notifiable Trait

Notifications may be sent in two ways: using the notify method of the Notifiable trait or using
the Notification facade. First, let’s examine the Notifiable trait. This trait is used by the default
App\Usermodel and contains onemethod thatmay be used to send notifications: notify. The notify
method expects to receive a notification instance:

1 use App\Notifications\InvoicePaid;

2

3 $user->notify(new InvoicePaid($invoice));

{tip} Remember, you may use the Illuminate\Notifications\Notifiable trait on any
of your models. You are not limited to only including it on your User model.

Using The Notification Facade

Alternatively, youmay send notifications via the Notification facade. This is useful primarily when
you need to send a notification to multiple notifiable entities such as a collection of users. To send
notifications using the facade, pass all of the notifiable entities and the notification instance to the
send method:

1 Notification::send($users, new InvoicePaid($invoice));

Notifications 397

Specifying Delivery Channels

Every notification class has a via method that determines on which channels the notification will
be delivered. Out of the box, notifications may be sent on the mail, database, broadcast, nexmo,
and slack channels.

{tip} If you would like to use other delivery channels such as Telegram or Pusher, check
out the community driven Laravel Notification Channels website²²⁴.

The viamethod receives a $notifiable instance, which will be an instance of the class to which the
notification is being sent. You may use $notifiable to determine which channels the notification
should be delivered on:

1 /**

2 * Get the notification's delivery channels.

3 *

4 * @param mixed $notifiable

5 * @return array

6 */

7 public function via($notifiable)

8 {

9 return $notifiable->prefers_sms ? ['nexmo'] : ['mail', 'database'];

10 }

Queueing Notifications

{note} Before queueing notifications you should configure your queue and start a
worker.

Sending notifications can take time, especially if the channel needs an external API call to deliver
the notification. To speed up your application’s response time, let your notification be queued by
adding the ShouldQueue interface and Queueable trait to your class. The interface and trait are
already imported for all notifications generated using make:notification, so you may immediately
add them to your notification class:

1 <?php

2

3 namespace App\Notifications;

4

²²⁴http://laravel-notification-channels.com

http://laravel-notification-channels.com/
http://laravel-notification-channels.com/

Notifications 398

5 use Illuminate\Bus\Queueable;

6 use Illuminate\Notifications\Notification;

7 use Illuminate\Contracts\Queue\ShouldQueue;

8

9 class InvoicePaid extends Notification implements ShouldQueue

10 {

11 use Queueable;

12

13 // ...

14 }

Once the ShouldQueue interface has been added to your notification, you may send the notification
like normal. Laravel will detect the ShouldQueue interface on the class and automatically queue the
delivery of the notification:

1 $user->notify(new InvoicePaid($invoice));

If you would like to delay the delivery of the notification, you may chain the delay method onto
your notification instantiation:

1 $when = Carbon::now()->addMinutes(10);

2

3 $user->notify((new InvoicePaid($invoice))->delay($when));

Mail Notifications

Formatting Mail Messages

If a notification supports being sent as an email, you should define a toMail method on the
notification class. This method will receive a $notifiable entity and should return a Illumi-

nate\Notifications\Messages\MailMessage instance. Mail messages may contains lines of text
as well as a “call to action”. Let’s take a look at an example toMail method:

Notifications 399

1 /**

2 * Get the mail representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return \Illuminate\Notifications\Messages\MailMessage

6 */

7 public function toMail($notifiable)

8 {

9 $url = url('/invoice/'.$this->invoice->id);

10

11 return (new MailMessage)

12 ->greeting('Hello!')

13 ->line('One of your invoices has been paid!')

14 ->action('View Invoice', $url)

15 ->line('Thank you for using our application!');

16 }

{tip} Note we are using $this->invoice->id in our messagemethod. You may pass any
data your notification needs to generate its message into the notification’s constructor.

In this example, we register a greeting, a line of text, a call to action, and then another line of
text. These methods provided by the MailMessage object make it simple and fast to format small
transactional emails. The mail channel will then translate the message components into a nice,
responsive HTML email template with a plain-text counterpart. Here is an example of an email
generated by the mail channel:

{tip} When sending mail notifications, be sure to set the name value in your con-

fig/app.php configuration file. This value will be used in the header and footer of
your mail notification messages.

Customizing The Recipient

When sending notifications via the mail channel, the notification system will automatically look
for an email property on your notifiable entity. You may customize which email address is used to
deliver the notification by defining a routeNotificationForMail method on the entity:

Notifications 400

1 <?php

2

3 namespace App;

4

5 use Illuminate\Notifications\Notifiable;

6 use Illuminate\Foundation\Auth\User as Authenticatable;

7

8 class User extends Authenticatable

9 {

10 use Notifiable;

11

12 /**

13 * Route notifications for the mail channel.

14 *

15 * @return string

16 */

17 public function routeNotificationForMail()

18 {

19 return $this->email_address;

20 }

21 }

Customizing The Subject

By default, the email’s subject is the class name of the notification formatted to “title case”. So, if your
notification class is named InvoicePaid, the email’s subject will be Invoice Paid. If you would like
to specify an explicit subject for the message, you may call the subjectmethod when building your
message:

1 /**

2 * Get the mail representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return \Illuminate\Notifications\Messages\MailMessage

6 */

7 public function toMail($notifiable)

8 {

9 return (new MailMessage)

10 ->subject('Notification Subject')

11 ->line('...');

Notifications 401

12 }

Customizing The Templates

You can modify the HTML and plain-text template used by mail notifications by publishing the
notification package’s resources. After running this command, the mail notification templates will
be located in the resources/views/vendor/notifications directory:

1 php artisan vendor:publish --tag=laravel-notifications

Error Messages

Some notifications inform users of errors, such as a failed invoice payment. You may indicate that a
mail message is regarding an error by calling the errormethod when building your message. When
using the error method on a mail message, the call to action button will be red instead of blue:

1 /**

2 * Get the mail representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return \Illuminate\Notifications\Message

6 */

7 public function toMail($notifiable)

8 {

9 return (new MailMessage)

10 ->error()

11 ->subject('Notification Subject')

12 ->line('...');

13 }

Notifications 402

Database Notifications

Prerequisites

The database notification channel stores the notification information in a database table. This table
will contain information such as the notification type as well as custom JSON data that describes
the notification.

You can query the table to display the notifications in your application’s user interface. But, before
you can do that, you will need to create a database table to hold your notifications. You may use the
notifications:table command to generate a migration with the proper table schema:

1 php artisan notifications:table

2

3 php artisan migrate

Formatting Database Notifications

If a notification supports being stored in a database table, you should define a toDatabase or toArray
method on the notification class. This method will receive a $notifiable entity and should return
a plain PHP array. The returned array will be encoded as JSON and stored in the data column of
your notifications table. Let’s take a look at an example toArray method:

1 /**

2 * Get the array representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return array

6 */

7 public function toArray($notifiable)

8 {

9 return [

10 'invoice_id' => $this->invoice->id,

11 'amount' => $this->invoice->amount,

12];

13 }

Notifications 403

toDatabase Vs. toArray

The toArraymethod is also used by the broadcast channel to determine which data to broadcast to
your JavaScript client. If you would like to have two different array representations for the database
and broadcast channels, you should define a toDatabase method instead of a toArray method.

Accessing The Notifications

Once notifications are stored in the database, you need a convenient way to access them from
your notifiable entities. The Illuminate\Notifications\Notifiable trait, which is included on
Laravel’s default App\User model, includes a notifications Eloquent relationship that returns
the notifications for the entity. To fetch notifications, you may access this method like any other
Eloquent relationship. By default, notifications will be sorted by the created_at timestamp:

1 $user = App\User::find(1);

2

3 foreach ($user->notifications as $notification) {

4 echo $notification->type;

5 }

If you want to retrieve only the “unread” notifications, you may use the unreadNotifications

relationship. Again, these notifications will be sorted by the created_at timestamp:

1 $user = App\User::find(1);

2

3 foreach ($user->unreadNotifications as $notification) {

4 echo $notification->type;

5 }

{tip} To access your notifications from your JavaScript client, you should define
a notification controller for your application which returns the notifications for a
notifiable entity, such as the current user. You may then make an HTTP request to
that controller’s URI from your JavaScript client.

Marking Notifications As Read

Typically, you will want to mark a notification as “read” when a user views it. The Illumi-

nate\Notifications\Notifiable trait provides a markAsRead method, which updates the read_at
column on the notification’s database record:

Notifications 404

1 $user = App\User::find(1);

2

3 foreach ($user->unreadNotifications as $notification) {

4 $notification->markAsRead();

5 }

However, instead of looping through each notification, youmay use the markAsReadmethod directly
on a collection of notifications:

1 $user->unreadNotifications->markAsRead();

You may also use a mass-update query to mark all of the notifications as read without retrieving
them from the database:

1 $user = App\User::find(1);

2

3 $user->unreadNotifications()->update(['read_at' => Carbon::now()]);

Of course, you may delete the notifications to remove them from the table entirely:

1 $user->notifications()->delete();

Broadcast Notifications

Prerequisites

Before broadcasting notifications, you should configure and be familiar with Laravel’s event
broadcasting services. Event broadcasting provides a way to react to server-side fired Laravel events
from your JavaScript client.

Formatting Broadcast Notifications

The broadcast channel broadcasts notifications using Laravel’s event broadcasting services, allow-
ing your JavaScript client to catch notifications in realtime. If a notification supports broadcasting,

Notifications 405

you should define a toBroadcast or toArray method on the notification class. This method will
receive a $notifiable entity and should return a plain PHP array. The returned array will be
encoded as JSON and broadcast to your JavaScript client. Let’s take a look at an example toArray
method:

1 /**

2 * Get the array representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return array

6 */

7 public function toArray($notifiable)

8 {

9 return [

10 'invoice_id' => $this->invoice->id,

11 'amount' => $this->invoice->amount,

12];

13 }

{tip} In addition to the data you specify, broadcast notifications will also contain a type
field containing the class name of the notification.

toBroadcast Vs. toArray

The toArraymethod is also used by the database channel to determine which data to store in your
database table. If you would like to have two different array representations for the database and
broadcast channels, you should define a toBroadcast method instead of a toArray method.

Listening For Notifications

Notifications will broadcast on a private channel formatted using a {notifiable}.{id} convention.
So, if you are sending a notification to a App\User instance with an ID of 1, the notification will be
broadcast on the App.User.1 private channel. When using Laravel Echo, you may easily listen for
notifications on a channel using the notification helper method:

1 Echo.private('App.User.' + userId)

2 .notification((notification) => {

3 console.log(notification.type);

4 });

Notifications 406

SMS Notifications

Prerequisites

Sending SMS notifications in Laravel is powered by Nexmo²²⁵. Before you can send notifications
via Nexmo, you need to install the nexmo/client Composer package and add a few configuration
options to your config/services.php configuration file. You may copy the example configuration
below to get started:

1 'nexmo' => [

2 'key' => env('NEXMO_KEY'),

3 'secret' => env('NEXMO_SECRET'),

4 'sms_from' => '15556666666',

5],

The sms_from option is the phone number that your SMS messages will be sent from. You should
generate a phone number for your application in the Nexmo control panel.

Formatting SMS Notifications

If a notification supports being sent as a SMS, you should define a toNexmo method on the
notification class. This method will receive a $notifiable entity and should return a Illumi-

nate\Notifications\Messages\NexmoMessage instance:

1 /**

2 * Get the Nexmo / SMS representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return NexmoMessage

6 */

7 public function toNexmo($notifiable)

8 {

9 return (new NexmoMessage)

²²⁵https://www.nexmo.com/

https://www.nexmo.com/
https://www.nexmo.com/

Notifications 407

10 ->content('Your SMS message content');

11 }

Customizing The “From” Number

If you would like to send some notifications from a phone number that is different from the
phone number specified in your config/services.php file, you may use the from method on a
NexmoMessage instance:

1 /**

2 * Get the Nexmo / SMS representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return NexmoMessage

6 */

7 public function toNexmo($notifiable)

8 {

9 return (new NexmoMessage)

10 ->content('Your SMS message content')

11 ->from('15554443333');

12 }

Routing SMS Notifications

When sending notifications via the nexmo channel, the notification systemwill automatically look for
a phone_number attribute on the notifiable entity. If you would like to customize the phone number
the notification is delivered to, define a routeNotificationForNexmo method on the entity:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Notifications\Notifiable;

6 use Illuminate\Foundation\Auth\User as Authenticatable;

7

8 class User extends Authenticatable

9 {

Notifications 408

10 use Notifiable;

11

12 /**

13 * Route notifications for the Nexmo channel.

14 *

15 * @return string

16 */

17 public function routeNotificationForNexmo()

18 {

19 return $this->phone;

20 }

21 }

Slack Notifications

Prerequisites

Before you can send notifications via Slack, you must install the Guzzle HTTP library via Composer:

1 composer require guzzlehttp/guzzle

You will also need to configure an “Incoming Webhook” integration for your Slack team. This
integration will provide you with a URL you may use when routing Slack notifications.

Formatting Slack Notifications

If a notification supports being sent as a Slack message, you should define a toSlack method
on the notification class. This method will receive a $notifiable entity and should return a
Illuminate\Notifications\Messages\SlackMessage instance. Slack messages may contain text
content as well as an “attachment” that formats additional text or an array of fields. Let’s take a
look at a basic toSlack example:

1 /**

2 * Get the Slack representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return SlackMessage

Notifications 409

6 */

7 public function toSlack($notifiable)

8 {

9 return (new SlackMessage)

10 ->content('One of your invoices has been paid!');

11 }

In this example we are just sending a single line of text to Slack, which will create a message that
looks like the following:

Slack Attachments

You may also add “attachments” to Slack messages. Attachments provide richer formatting options
than simple text messages. In this example, we will send an error notification about an exception
that occurred in an application, including a link to view more details about the exception:

1 /**

2 * Get the Slack representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return SlackMessage

6 */

7 public function toSlack($notifiable)

8 {

9 $url = url('/exceptions/'.$this->exception->id);

10

11 return (new SlackMessage)

12 ->error()

13 ->content('Whoops! Something went wrong.')

14 ->attachment(function ($attachment) use ($url) {

15 $attachment->title('Exception: File Not Found', $url)

16 ->content('File [background.jpg] was not found.');

17 });

18 }

The example above will generate a Slack message that looks like the following:

Notifications 410

Attachments also allow you to specify an array of data that should be presented to the user. The
given data will be presented in a table-style format for easy reading:

1 /**

2 * Get the Slack representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return SlackMessage

6 */

7 public function toSlack($notifiable)

8 {

9 $url = url('/invoices/'.$this->invoice->id);

10

11 return (new SlackMessage)

12 ->success()

13 ->content('One of your invoices has been paid!')

14 ->attachment(function ($attachment) use ($url) {

15 $attachment->title('Invoice 1322', $url)

16 ->fields([

17 'Title' => 'Server Expenses',

18 'Amount' => '$1,234',

19 'Via' => 'American Express',

20 'Was Overdue' => ':-1:',

21]);

22 });

23 }

The example above will create a Slack message that looks like the following:

Customizing The Sender & Recipient

You may use the from and to methods to customize the sender and recipient. The from method
accepts a username and emoji identifier, while the to method accepts a channel or username:

1 /**

2 * Get the Slack representation of the notification.

3 *

4 * @param mixed $notifiable

5 * @return SlackMessage

6 */

Notifications 411

7 public function toSlack($notifiable)

8 {

9 return (new SlackMessage)

10 ->from('Ghost', ':ghost:')

11 ->to('#other')

12 ->content('This will be sent to #other');

13 }

Routing Slack Notifications

To route Slack notifications to the proper location, define a routeNotificationForSlack method
on your notifiable entity. This should return the webhook URL to which the notification should
be delivered. Webhook URLs may be generated by adding an “Incoming Webhook” service to your
Slack team:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Notifications\Notifiable;

6 use Illuminate\Foundation\Auth\User as Authenticatable;

7

8 class User extends Authenticatable

9 {

10 use Notifiable;

11

12 /**

13 * Route notifications for the Slack channel.

14 *

15 * @return string

16 */

17 public function routeNotificationForSlack()

18 {

19 return $this->slack_webhook_url;

20 }

21 }

Notifications 412

Notification Events

When a notification is sent, the Illuminate\Notifications\Events\NotificationSent event is
fired by the notification system. This contains the “notifiable” entity and the notification instance
itself. You may register listeners for this event in your EventServiceProvider:

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 'Illuminate\Notifications\Events\NotificationSent' => [

8 'App\Listeners\LogNotification',

9],

10];

{tip} After registering listeners in your EventServiceProvider, use the event:generate
Artisan command to quickly generate listener classes.

Within an event listener, you may access the notifiable, notification, and channel properties on
the event to learn more about the notification recipient or the notification itself:

1 /**

2 * Handle the event.

3 *

4 * @param NotificationSent $event

5 * @return void

6 */

7 public function handle(NotificationSent $event)

8 {

9 // $event->channel

10 // $event->notifiable

11 // $event->notification

12 }

Notifications 413

Custom Channels

Laravel ships with a handful of notification channels, but you may want to write your own drivers
to deliver notifications via other channels. Laravel makes it simple. To get started, define a class
that contains a send method. The method should receive two arguments: a $notifiable and a
$notification:

1 <?php

2

3 namespace App\Channels;

4

5 use Illuminate\Notifications\Notification;

6

7 class VoiceChannel

8 {

9 /**

10 * Send the given notification.

11 *

12 * @param mixed $notifiable

13 * @param \Illuminate\Notifications\Notification $notification

14 * @return void

15 */

16 public function send($notifiable, Notification $notification)

17 {

18 $message = $notification->toVoice($notifiable);

19

20 // Send notification to the $notifiable instance...

21 }

22 }

Once your notification channel class has been defined, you may simply return the class name from
the via method of any of your notifications:

1 <?php

2

3 namespace App\Notifications;

4

5 use Illuminate\Bus\Queueable;

6 use App\Channels\VoiceChannel;

7 use App\Channels\Messages\VoiceMessage;

8 use Illuminate\Notifications\Notification;

Notifications 414

9 use Illuminate\Contracts\Queue\ShouldQueue;

10

11 class InvoicePaid extends Notification

12 {

13 use Queueable;

14

15 /**

16 * Get the notification channels.

17 *

18 * @param mixed $notifiable

19 * @return array|string

20 */

21 public function via($notifiable)

22 {

23 return [VoiceChannel::class];

24 }

25

26 /**

27 * Get the voice representation of the notification.

28 *

29 * @param mixed $notifiable

30 * @return VoiceMessage

31 */

32 public function toVoice($notifiable)

33 {

34 // ...

35 }

36 }

Queues
• Introduction A> - Connections Vs. Queues A> - Driver Prerequisites
• Creating Jobs A> - Generating Job Classes A> - Class Structure
• Dispatching Jobs A> - Delayed Dispatching A> - Customizing The Queue & Connection A> -
Error Handling

• Running The Queue Worker A> - Queue Priorities A> - Queue Workers & Deployment A> -
Job Expirations & Timeouts

• Supervisor Configuration
• Dealing With Failed Jobs A> - Cleaning Up After Failed Jobs A> - Failed Job Events A> -
Retrying Failed Jobs

• Job Events

Introduction

Laravel queues provide a unified API across a variety of different queue backends, such as Beanstalk,
Amazon SQS, Redis, or even a relational database. Queues allow you to defer the processing of a
time consuming task, such as sending an email, until a later time. Deferring these time consuming
tasks drastically speeds up web requests to your application.

The queue configuration file is stored in config/queue.php. In this file you will find connection
configurations for each of the queue drivers that are included with the framework, which includes
a database, Beanstalkd²²⁶, Amazon SQS²²⁷, Redis²²⁸, and a synchronous driver that will execute jobs
immediately (for local use). A null queue driver is also included which simply discards queued jobs.

Connections Vs. Queues

Before getting started with Laravel queues, it is important to understand the distinction between
“connections” and “queues”. In your config/queue.php configuration file, there is a connections

configuration option. This option defines a particular connection to a backend service such as
Amazon SQS, Beanstalk, or Redis. However, any given queue connection may have multiple
“queues” which may be thought of as different stacks or piles of queued jobs.

Note that each connection configuration example in the queue configuration file contains a queue

attribute. This is the default queue that jobs will be dispatched to when they are sent to a given

²²⁶https://kr.github.io/beanstalkd/
²²⁷https://aws.amazon.com/sqs/
²²⁸http://redis.io

https://kr.github.io/beanstalkd/
https://aws.amazon.com/sqs/
http://redis.io/
https://kr.github.io/beanstalkd/
https://aws.amazon.com/sqs/
http://redis.io/

Queues 416

connection. In other words, if you dispatch a job without explicitly defining which queue it should
be dispatched to, the job will be placed on the queue that is defined in the queue attribute of the
connection configuration:

1 // This job is sent to the default queue...

2 dispatch(new Job);

3

4 // This job is sent to the "emails" queue...

5 dispatch((new Job)->onQueue('emails'));

Some applications may not need to ever push jobs onto multiple queues, instead preferring to have
one simple queue. However, pushing jobs to multiple queues can be especially useful for applications
that wish to prioritize or segment how jobs are processed, since the Laravel queue worker allows
you to specify which queues it should process by priority. For example, if you push jobs to a high

queue, you may run a worker that gives them higher processing priority:

1 php artisan queue:work --queue=high,default

Driver Prerequisites

Database

In order to use the database queue driver, you will need a database table to hold the jobs. To generate
a migration that creates this table, run the queue:table Artisan command. Once the migration has
been created, you may migrate your database using the migrate command:

1 php artisan queue:table

2

3 php artisan migrate

Other Driver Prerequisites

The following dependencies are needed for the listed queue drivers:

<div class=”content-list” markdown=”1”> - Amazon SQS: aws/aws-sdk-php ∼3.0 - Beanstalkd:
pda/pheanstalk ∼3.0 - Redis: predis/predis ∼1.0 </div>

Queues 417

Creating Jobs

Generating Job Classes

By default, all of the queueable jobs for your application are stored in the app/Jobs directory. If the
app/Jobs directory doesn’t exist, it will be created when you run the make:job Artisan command.
You may generate a new queued job using the Artisan CLI:

1 php artisan make:job SendReminderEmail

The generated class will implement the Illuminate\Contracts\Queue\ShouldQueue interface,
indicating to Laravel that the job should be pushed onto the queue to run asynchronously.

Class Structure

Job classes are very simple, normally containing only a handlemethod which is called when the job
is processed by the queue. To get started, let’s take a look at an example job class. In this example,
we’ll pretend we manage a podcast publishing service and need to process the uploaded podcast
files before they are published:

1 <?php

2

3 namespace App\Jobs;

4

5 use App\Podcast;

6 use App\AudioProcessor;

7 use Illuminate\Bus\Queueable;

8 use Illuminate\Queue\SerializesModels;

9 use Illuminate\Queue\InteractsWithQueue;

10 use Illuminate\Contracts\Queue\ShouldQueue;

11

12 class ProcessPodcast implements ShouldQueue

13 {

14 use InteractsWithQueue, Queueable, SerializesModels;

15

16 protected $podcast;

17

18 /**

19 * Create a new job instance.

20 *

Queues 418

21 * @param Podcast $podcast

22 * @return void

23 */

24 public function __construct(Podcast $podcast)

25 {

26 $this->podcast = $podcast;

27 }

28

29 /**

30 * Execute the job.

31 *

32 * @param AudioProcessor $processor

33 * @return void

34 */

35 public function handle(AudioProcessor $processor)

36 {

37 // Process uploaded podcast...

38 }

39 }

In this example, note that we were able to pass an Eloquent model directly into the queued job’s
constructor. Because of the SerializesModels trait that the job is using, Eloquent models will be
gracefully serialized and unserialized when the job is processing. If your queued job accepts an
Eloquent model in its constructor, only the identifier for the model will be serialized onto the queue.
When the job is actually handled, the queue system will automatically re-retrieve the full model
instance from the database. It’s all totally transparent to your application and prevents issues that
can arise from serializing full Eloquent model instances.

The handle method is called when the job is processed by the queue. Note that we are able to type-
hint dependencies on the handle method of the job. The Laravel service container automatically
injects these dependencies.

{note} Binary data, such as raw image contents, should be passed through the base64_-
encode function before being passed to a queued job. Otherwise, the job may not
properly serialize to JSON when being placed on the queue.

Dispatching Jobs

Once you have written your job class, you may dispatch it using the dispatch helper. The only
argument you need to pass to the dispatch helper is an instance of the job:

Queues 419

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Jobs\ProcessPodcast;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class PodcastController extends Controller

10 {

11 /**

12 * Store a new podcast.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

18 {

19 // Create podcast...

20

21 dispatch(new ProcessPodcast($podcast));

22 }

23 }

{tip} The dispatch helper provides the convenience of a short, globally available
function, while also being extremely easy to test. Check out the Laravel testing
documentation to learn more.

Delayed Dispatching

If you would like to delay the execution of a queued job, you may use the delaymethod on your job
instance. The delay method is provided by the Illuminate\Bus\Queueable trait, which is included
by default on all generated job classes. For example, let’s specify that a job should not be available
for processing until 10 minutes after it has been dispatched:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Carbon\Carbon;

Queues 420

6 use App\Jobs\ProcessPodcast;

7 use Illuminate\Http\Request;

8 use App\Http\Controllers\Controller;

9

10 class PodcastController extends Controller

11 {

12 /**

13 * Store a new podcast.

14 *

15 * @param Request $request

16 * @return Response

17 */

18 public function store(Request $request)

19 {

20 // Create podcast...

21

22 $job = (new ProcessPodcast($podcast))

23 ->delay(Carbon::now()->addMinutes(10));

24

25 dispatch($job);

26 }

27 }

{note} The Amazon SQS queue service has a maximum delay time of 15 minutes.

Customizing The Queue & Connection

Dispatching To A Particular Queue

By pushing jobs to different queues, you may “categorize” your queued jobs and even prioritize how
many workers you assign to various queues. Keep in mind, this does not push jobs to different queue
“connections” as defined by your queue configuration file, but only to specific queues within a single
connection. To specify the queue, use the onQueue method on the job instance:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Jobs\ProcessPodcast;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

Queues 421

8

9 class PodcastController extends Controller

10 {

11 /**

12 * Store a new podcast.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

18 {

19 // Create podcast...

20

21 $job = (new ProcessPodcast($podcast))->onQueue('processing');

22

23 dispatch($job);

24 }

25 }

Dispatching To A Particular Connection

If you are working with multiple queue connections, you may specify which connection to push a
job to. To specify the connection, use the onConnection method on the job instance:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Jobs\ProcessPodcast;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class PodcastController extends Controller

10 {

11 /**

12 * Store a new podcast.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

Queues 422

18 {

19 // Create podcast...

20

21 $job = (new ProcessPodcast($podcast))->onConnection('sqs');

22

23 dispatch($job);

24 }

25 }

Of course, you may chain the onConnection and onQueue methods to specify the connection and
the queue for a job:

1 $job = (new ProcessPodcast($podcast))

2 ->onConnection('sqs')

3 ->onQueue('processing');

Error Handling

If an exception is thrown while the job is being processed, the job will automatically be released
back onto the queue so it may be attempted again. The job will continue to be released until it
has been attempted the maximum number of times allowed by your application. The number of
maximum attempts is defined by the --tries switch used on the queue:work Artisan command.
More information on running the queue worker can be found below.

Running The Queue Worker

Laravel includes a queue worker that will process new jobs as they are pushed onto the queue.
You may run the worker using the queue:work Artisan command. Note that once the queue:work
command has started, it will continue to run until it is manually stopped or you close your terminal:

1 php artisan queue:work

{tip} To keep the queue:work process running permanently in the background, you
should use a process monitor such as Supervisor to ensure that the queue worker does
not stop running.

Queues 423

Remember, queueworkers are long-lived processes and store the booted application state inmemory.
As a result, they will not notice changes in your code base after they have been started. So, during
your deployment process, be sure to restart your queue workers.

Specifying The Connection & Queue

You may also specify which queue connection the worker should utilize. The connection name
passed to the work command should correspond to one of the connections defined in your
config/queue.php configuration file:

1 php artisan queue:work redis

Youmay customize your queue worker even further by only processing particular queues for a given
connection. For example, if all of your emails are processed in an emails queue on your redis queue
connection, you may issue the following command to start a worker that only processes only that
queue:

1 php artisan queue:work redis --queue=emails

Queue Priorities

Sometimes you may wish to prioritize how your queues are processed. For example, in your
config/queue.php you may set the default queue for your redis connection to low. However,
occasionally you may wish to push a job to a high priority queue like so:

1 dispatch((new Job)->onQueue('high'));

To start a worker that verifies that all of the high queue jobs are processed before continuing to any
jobs on the low queue, pass a comma-delimited list of queue names to the work command:

1 php artisan queue:work --queue=high,low

Queues 424

Queue Workers & Deployment

Since queue workers are long-lived processes, they will not pick up changes to your code without
being restarted. So, the simplest way to deploy an application using queue workers is to restart the
workers during your deployment process. You may gracefully restart all of the workers by issuing
the queue:restart command:

1 php artisan queue:restart

This command will instruct all queue workers to gracefully “die” after they finish processing their
current job so that no existing jobs are lost. Since the queueworkers will die when the queue:restart
command is executed, you should be running a process manager such as Supervisor to automatically
restart the queue workers.

Job Expirations & Timeouts

Job Expiration

In your config/queue.php configuration file, each queue connection defines a retry_after option.
This option specifies howmany seconds the queue connection should wait before retrying a job that
is being processed. For example, if the value of retry_after is set to 90, the job will be released back
onto the queue if it has been processing for 90 seconds without being deleted. Typically, you should
set the retry_after value to the maximum number of seconds your jobs should reasonably take to
complete processing.

{note} The only queue connection which does not contain a retry_after value is
Amazon SQS. SQS will retry the job based on the Default Visibility Timeout²²⁹ which
is managed within the AWS console.

Worker Timeouts

The queue:work Artisan command exposes a --timeout option. The --timeout option specifies
how long the Laravel queue master process will wait before killing off a child queue worker that is
processing a job. Sometimes a child queue process can become “frozen” for various reasons, such as
an external HTTP call that is not responding. The --timeout option removes frozen processes that
have exceeded that specified time limit:

²²⁹https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html

Queues 425

1 php artisan queue:work --timeout=60

The retry_after configuration option and the --timeoutCLI option are different, but work together
to ensure that jobs are not lost and that jobs are only successfully processed once.

{note} The --timeout value should always be at least several seconds shorter than your
retry_after configuration value. This will ensure that a worker processing a given job
is always killed before the job is retried. If your --timeout option is longer than your
retry_after configuration value, your jobs may be processed twice.

Supervisor Configuration

Installing Supervisor

Supervisor is a process monitor for the Linux operating system, and will automatically restart your
queue:work process if it fails. To install Supervisor on Ubuntu, you may use the following command:

1 sudo apt-get install supervisor

{tip} If configuring Supervisor yourself sounds overwhelming, consider using Laravel
Forge²³⁰, which will automatically install and configure Supervisor for your Laravel
projects.

Configuring Supervisor

Supervisor configuration files are typically stored in the /etc/supervisor/conf.d directory. Within
this directory, you may create any number of configuration files that instruct supervisor how your
processes should be monitored. For example, let’s create a laravel-worker.conf file that starts and
monitors a queue:work process:

1 [program:laravel-worker]

2 process_name=%(program_name)s_%(process_num)02d

3 command=php /home/forge/app.com/artisan queue:work sqs --sleep=3 --tries=3

4 autostart=true

5 autorestart=true

²³⁰https://forge.laravel.com

https://forge.laravel.com/
https://forge.laravel.com/
https://forge.laravel.com/

Queues 426

6 user=forge

7 numprocs=8

8 redirect_stderr=true

9 stdout_logfile=/home/forge/app.com/worker.log

In this example, the numprocs directive will instruct Supervisor to run 8 queue:work processes and
monitor all of them, automatically restarting them if they fail. Of course, you should change the
queue:work sqs portion of the command directive to reflect your desired queue connection.

Starting Supervisor

Once the configuration file has been created, you may update the Supervisor configuration and start
the processes using the following commands:

1 sudo supervisorctl reread

2

3 sudo supervisorctl update

4

5 sudo supervisorctl start laravel-worker:*

For more information on Supervisor, consult the Supervisor documentation²³¹.

Dealing With Failed Jobs

Sometimes your queued jobs will fail. Don’t worry, things don’t always go as planned! Laravel
includes a convenient way to specify themaximum number of times a job should be attempted. After
a job has exceeded this amount of attempts, it will be inserted into the failed_jobs database table.
To create a migration for the failed_jobs table, you may use the queue:failed-table command:

1 php artisan queue:failed-table

2

3 php artisan migrate

Then, when running your queue worker, you should specify the maximum number of times a job
should be attempted using the --tries switch on the queue:work command. If you do not specify
a value for the --tries option, jobs will be attempted indefinitely:

²³¹http://supervisord.org/index.html

http://supervisord.org/index.html
http://supervisord.org/index.html

Queues 427

1 php artisan queue:work redis --tries=3

Cleaning Up After Failed Jobs

You may define a failed method directly on your job class, allowing you to perform job specific
clean-up when a failure occurs. This is the perfect location to send an alert to your users or revert
any actions performed by the job. The Exception that caused the job to fail will be passed to the
failed method:

1 <?php

2

3 namespace App\Jobs;

4

5 use Exception;

6 use App\Podcast;

7 use App\AudioProcessor;

8 use Illuminate\Bus\Queueable;

9 use Illuminate\Queue\SerializesModels;

10 use Illuminate\Queue\InteractsWithQueue;

11 use Illuminate\Contracts\Queue\ShouldQueue;

12

13 class ProcessPodcast implements ShouldQueue

14 {

15 use InteractsWithQueue, Queueable, SerializesModels;

16

17 protected $podcast;

18

19 /**

20 * Create a new job instance.

21 *

22 * @param Podcast $podcast

23 * @return void

24 */

25 public function __construct(Podcast $podcast)

26 {

27 $this->podcast = $podcast;

28 }

29

30 /**

31 * Execute the job.

Queues 428

32 *

33 * @param AudioProcessor $processor

34 * @return void

35 */

36 public function handle(AudioProcessor $processor)

37 {

38 // Process uploaded podcast...

39 }

40

41 /**

42 * The job failed to process.

43 *

44 * @param Exception $exception

45 * @return void

46 */

47 public function failed(Exception $exception)

48 {

49 // Send user notification of failure, etc...

50 }

51 }

Failed Job Events

If you would like to register an event that will be called when a job fails, you may use the
Queue::failing method. This event is a great opportunity to notify your team via email or
HipChat²³². For example, we may attach a callback to this event from the AppServiceProvider that
is included with Laravel:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\Queue;

6 use Illuminate\Queue\Events\JobFailed;

7 use Illuminate\Support\ServiceProvider;

8

9 class AppServiceProvider extends ServiceProvider

10 {

11 /**

²³²https://www.hipchat.com

https://www.hipchat.com/
https://www.hipchat.com/

Queues 429

12 * Bootstrap any application services.

13 *

14 * @return void

15 */

16 public function boot()

17 {

18 Queue::failing(function (JobFailed $event) {

19 // $event->connectionName

20 // $event->job

21 // $event->exception

22 });

23 }

24

25 /**

26 * Register the service provider.

27 *

28 * @return void

29 */

30 public function register()

31 {

32 //

33 }

34 }

Retrying Failed Jobs

To view all of your failed jobs that have been inserted into your failed_jobs database table, you
may use the queue:failed Artisan command:

1 php artisan queue:failed

The queue:failed command will list the job ID, connection, queue, and failure time. The job ID
may be used to retry the failed job. For instance, to retry a failed job that has an ID of 5, issue the
following command:

1 php artisan queue:retry 5

Queues 430

To retry all of your failed jobs, execute the queue:retry command and pass all as the ID:

1 php artisan queue:retry all

If you would like to delete a failed job, you may use the queue:forget command:

1 php artisan queue:forget 5

To delete all of your failed jobs, you may use the queue:flush command:

1 php artisan queue:flush

Job Events

Using the before and aftermethods on the Queue facade, you may specify callbacks to be executed
before or after a queued job is processed. These callbacks are a great opportunity to perform
additional logging or increment statistics for a dashboard. Typically, you should call these methods
from a service provider. For example, we may use the AppServiceProvider that is included with
Laravel:

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\Queue;

6 use Illuminate\Support\ServiceProvider;

7 use Illuminate\Queue\Events\JobProcessed;

8 use Illuminate\Queue\Events\JobProcessing;

9

10 class AppServiceProvider extends ServiceProvider

11 {

12 /**

13 * Bootstrap any application services.

14 *

15 * @return void

Queues 431

16 */

17 public function boot()

18 {

19 Queue::before(function (JobProcessing $event) {

20 // $event->connectionName

21 // $event->job

22 // $event->job->payload()

23 });

24

25 Queue::after(function (JobProcessed $event) {

26 // $event->connectionName

27 // $event->job

28 // $event->job->payload()

29 });

30 }

31

32 /**

33 * Register the service provider.

34 *

35 * @return void

36 */

37 public function register()

38 {

39 //

40 }

41 }

Database: Getting Started
• Introduction A> - Configuration A> - Read &Write Connections A> - UsingMultiple Database
Connections

• Running Raw SQL Queries A> - Listening For Query Events
• Database Transactions

Introduction

Laravel makes interacting with databases extremely simple across a variety of database backends
using either raw SQL, the fluent query builder, and the Eloquent ORM. Currently, Laravel supports
four databases:

<div class=”content-list” markdown=”1”> - MySQL - Postgres - SQLite - SQL Server </div>

Configuration

The database configuration for your application is located at config/database.php. In this file you
may define all of your database connections, as well as specify which connection should be used by
default. Examples for most of the supported database systems are provided in this file.

By default, Laravel’s sample environment configuration is ready to use with Laravel Homestead,
which is a convenient virtual machine for doing Laravel development on your local machine. Of
course, you are free to modify this configuration as needed for your local database.

SQLite Configuration

After creating a new SQLite database using a command such as touch database/database.sqlite,
you can easily configure your environment variables to point to this newly created database by using
the database’s absolute path:

1 DB_CONNECTION=sqlite

2 DB_DATABASE=/absolute/path/to/database.sqlite

Database: Getting Started 433

SQL Server Configuration

Laravel supports SQL Server out of the box; however, you will need to add the connection
configuration for the database to your config/database.php configuration file:

1 'sqlsrv' => [

2 'driver' => 'sqlsrv',

3 'host' => env('DB_HOST', 'localhost'),

4 'database' => env('DB_DATABASE', 'forge'),

5 'username' => env('DB_USERNAME', 'forge'),

6 'password' => env('DB_PASSWORD', ''),

7 'charset' => 'utf8',

8 'prefix' => '',

9],

Read & Write Connections

Sometimes you may wish to use one database connection for SELECT statements, and another for
INSERT, UPDATE, and DELETE statements. Laravel makes this a breeze, and the proper connections
will always be used whether you are using raw queries, the query builder, or the Eloquent ORM.

To see how read / write connections should be configured, let’s look at this example:

1 'mysql' => [

2 'read' => [

3 'host' => '192.168.1.1',

4],

5 'write' => [

6 'host' => '196.168.1.2'

7],

8 'driver' => 'mysql',

9 'database' => 'database',

10 'username' => 'root',

11 'password' => '',

12 'charset' => 'utf8',

13 'collation' => 'utf8_unicode_ci',

14 'prefix' => '',

15],

Database: Getting Started 434

Note that two keys have been added to the configuration array: read and write. Both of these keys
have array values containing a single key: host. The rest of the database options for the read and
write connections will be merged from the main mysql array.

You only need to place items in the read and write arrays if you wish to override the values from
the main array. So, in this case, 192.168.1.1will be used as the host for the “read” connection, while
192.168.1.2 will be used for the “write” connection. The database credentials, prefix, character set,
and all other options in the main mysql array will be shared across both connections.

Using Multiple Database Connections

When using multiple connections, you may access each connection via the connection method
on the DB facade. The name passed to the connection method should correspond to one of the
connections listed in your config/database.php configuration file:

1 $users = DB::connection('foo')->select(...);

You may also access the raw, underlying PDO instance using the getPdo method on a connection
instance:

1 $pdo = DB::connection()->getPdo();

Running Raw SQL Queries

Once you have configured your database connection, you may run queries using the DB facade. The
DB facade provides methods for each type of query: select, update, insert, delete, and statement.

Running A Select Query

To run a basic query, you may use the select method on the DB facade:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\DB;

6 use App\Http\Controllers\Controller;

7

Database: Getting Started 435

8 class UserController extends Controller

9 {

10 /**

11 * Show a list of all of the application's users.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $users = DB::select('select * from users where active = ?', [1]);

18

19 return view('user.index', ['users' => $users]);

20 }

21 }

The first argument passed to the select method is the raw SQL query, while the second argument
is any parameter bindings that need to be bound to the query. Typically, these are the values of the
where clause constraints. Parameter binding provides protection against SQL injection.

The select method will always return an array of results. Each result within the array will be a
PHP StdClass object, allowing you to access the values of the results:

1 foreach ($users as $user) {

2 echo $user->name;

3 }

Using Named Bindings

Instead of using ? to represent your parameter bindings, you may execute a query using named
bindings:

1 $results = DB::select('select * from users where id = :id', ['id' => 1]);

Running An Insert Statement

To execute an insert statement, you may use the insertmethod on the DB facade. Like select, this
method takes the raw SQL query as its first argument and bindings as its second argument:

Database: Getting Started 436

1 DB::insert('insert into users (id, name) values (?, ?)', [1, 'Dayle']);

Running An Update Statement

The update method should be used to update existing records in the database. The number of rows
affected by the statement will be returned:

1 $affected = DB::update('update users set votes = 100 where name = ?', ['John']);

Running A Delete Statement

The delete method should be used to delete records from the database. Like update, the number of
rows affected will be returned:

1 $deleted = DB::delete('delete from users');

Running A General Statement

Some database statements do not return any value. For these types of operations, you may use the
statement method on the DB facade:

1 DB::statement('drop table users');

Listening For Query Events

If you would like to receive each SQL query executed by your application, you may use the listen
method. This method is useful for logging queries or debugging. Youmay register your query listener
in a service provider:

Database: Getting Started 437

1 <?php

2

3 namespace App\Providers;

4

5 use Illuminate\Support\Facades\DB;

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Bootstrap any application services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 DB::listen(function ($query) {

18 // $query->sql

19 // $query->bindings

20 // $query->time

21 });

22 }

23

24 /**

25 * Register the service provider.

26 *

27 * @return void

28 */

29 public function register()

30 {

31 //

32 }

33 }

Database Transactions

You may use the transaction method on the DB facade to run a set of operations within a
database transaction. If an exception is thrown within the transaction Closure, the transaction will
automatically be rolled back. If the Closure executes successfully, the transaction will automatically
be committed. You don’t need to worry about manually rolling back or committing while using the
transaction method:

Database: Getting Started 438

1 DB::transaction(function () {

2 DB::table('users')->update(['votes' => 1]);

3

4 DB::table('posts')->delete();

5 });

Manually Using Transactions

If you would like to begin a transaction manually and have complete control over rollbacks and
commits, you may use the beginTransaction method on the DB facade:

1 DB::beginTransaction();

You can rollback the transaction via the rollBack method:

1 DB::rollBack();

Lastly, you can commit a transaction via the commit method:

1 DB::commit();

{tip} Using the DB facade’s transaction methods also controls transactions for the query
builder and Eloquent ORM.

Database: Query Builder
• Introduction
• Retrieving Results A> - Chunking Results A> - Aggregates
• Selects
• Raw Expressions
• Joins
• Unions
• Where Clauses A> - Parameter Grouping A> -Where Exists Clauses A> - JSONWhere Clauses
• Ordering, Grouping, Limit, & Offset
• Conditional Clauses
• Inserts
• Updates A> - Updating JSON Columns A> - Increment & Decrement
• Deletes
• Pessimistic Locking

Introduction

Laravel’s database query builder provides a convenient, fluent interface to creating and running
database queries. It can be used to perform most database operations in your application and works
on all supported database systems.

The Laravel query builder uses PDO parameter binding to protect your application against SQL
injection attacks. There is no need to clean strings being passed as bindings.

Retrieving Results

Retrieving All Rows From A Table

You may use the tablemethod on the DB facade to begin a query. The tablemethod returns a fluent
query builder instance for the given table, allowing you to chain more constraints onto the query
and then finally get the results using the get method:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\DB;

Database: Query Builder 440

6 use App\Http\Controllers\Controller;

7

8 class UserController extends Controller

9 {

10 /**

11 * Show a list of all of the application's users.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $users = DB::table('users')->get();

18

19 return view('user.index', ['users' => $users]);

20 }

21 }

The get method returns an Illuminate\Support\Collection containing the results where each
result is an instance of the PHP StdClass object. You may access each column’s value by accessing
the column as a property of the object:

1 foreach ($users as $user) {

2 echo $user->name;

3 }

Retrieving A Single Row / Column From A Table

If you just need to retrieve a single row from the database table, you may use the first method.
This method will return a single StdClass object:

1 $user = DB::table('users')->where('name', 'John')->first();

2

3 echo $user->name;

If you don’t even need an entire row, you may extract a single value from a record using the value
method. This method will return the value of the column directly:

Database: Query Builder 441

1 $email = DB::table('users')->where('name', 'John')->value('email');

Retrieving A List Of Column Values

If you would like to retrieve an array containing the values of a single column, you may use the
pluck method. In this example, we’ll retrieve an array of role titles:

1 $titles = DB::table('roles')->pluck('title');

2

3 foreach ($titles as $title) {

4 echo $title;

5 }

You may also specify a custom key column for the returned array:

1 $roles = DB::table('roles')->pluck('title', 'name');

2

3 foreach ($roles as $name => $title) {

4 echo $title;

5 }

Chunking Results

If you need to work with thousands of database records, consider using the chunk method. This
method retrieves a small chunk of the results at a time and feeds each chunk into a Closure for
processing. This method is very useful for writing Artisan commands that process thousands of
records. For example, let’s work with the entire users table in chunks of 100 records at a time:

1 DB::table('users')->orderBy('id')->chunk(100, function ($users) {

2 foreach ($users as $user) {

3 //

4 }

5 });

Database: Query Builder 442

You may stop further chunks from being processed by returning false from the Closure:

1 DB::table('users')->orderBy('id')->chunk(100, function ($users) {

2 // Process the records...

3

4 return false;

5 });

Aggregates

The query builder also provides a variety of aggregate methods such as count, max, min, avg, and
sum. You may call any of these methods after constructing your query:

1 $users = DB::table('users')->count();

2

3 $price = DB::table('orders')->max('price');

Of course, you may combine these methods with other clauses:

1 $price = DB::table('orders')

2 ->where('finalized', 1)

3 ->avg('price');

Selects

Specifying A Select Clause

Of course, you may not always want to select all columns from a database table. Using the select
method, you can specify a custom select clause for the query:

1 $users = DB::table('users')->select('name', 'email as user_email')->get();

The distinct method allows you to force the query to return distinct results:

Database: Query Builder 443

1 $users = DB::table('users')->distinct()->get();

If you already have a query builder instance and you wish to add a column to its existing select
clause, you may use the addSelect method:

1 $query = DB::table('users')->select('name');

2

3 $users = $query->addSelect('age')->get();

Raw Expressions

Sometimes you may need to use a raw expression in a query. These expressions will be injected into
the query as strings, so be careful not to create any SQL injection points! To create a raw expression,
you may use the DB::raw method:

1 $users = DB::table('users')

2 ->select(DB::raw('count(*) as user_count, status'))

3 ->where('status', '<>', 1)

4 ->groupBy('status')

5 ->get();

Joins

Inner Join Clause

The query builder may also be used towrite join statements. To perform a basic “inner join”, youmay
use the joinmethod on a query builder instance. The first argument passed to the joinmethod is the
name of the table you need to join to, while the remaining arguments specify the column constraints
for the join. Of course, as you can see, you can join to multiple tables in a single query:

1 $users = DB::table('users')

2 ->join('contacts', 'users.id', '=', 'contacts.user_id')

3 ->join('orders', 'users.id', '=', 'orders.user_id')

Database: Query Builder 444

4 ->select('users.*', 'contacts.phone', 'orders.price')

5 ->get();

Left Join Clause

If you would like to perform a “left join” instead of an “inner join”, use the leftJoin method. The
leftJoin method has the same signature as the join method:

1 $users = DB::table('users')

2 ->leftJoin('posts', 'users.id', '=', 'posts.user_id')

3 ->get();

Cross Join Clause

To perform a “cross join” use the crossJoin method with the name of the table you wish to cross
join to. Cross joins generate a cartesian product between the first table and the joined table:

1 $users = DB::table('sizes')

2 ->crossJoin('colours')

3 ->get();

Advanced Join Clauses

You may also specify more advanced join clauses. To get started, pass a Closure as the second
argument into the join method. The Closure will receive a JoinClause object which allows you to
specify constraints on the join clause:

1 DB::table('users')

2 ->join('contacts', function ($join) {

3 $join->on('users.id', '=', 'contacts.user_id')->orOn(...);

4 })

5 ->get();

Database: Query Builder 445

If you would like to use a “where” style clause on your joins, you may use the where and orWhere

methods on a join. Instead of comparing two columns, these methods will compare the column
against a value:

1 DB::table('users')

2 ->join('contacts', function ($join) {

3 $join->on('users.id', '=', 'contacts.user_id')

4 ->where('contacts.user_id', '>', 5);

5 })

6 ->get();

Unions

The query builder also provides a quick way to “union” two queries together. For example, you may
create an initial query and use the union method to union it with a second query:

1 $first = DB::table('users')

2 ->whereNull('first_name');

3

4 $users = DB::table('users')

5 ->whereNull('last_name')

6 ->union($first)

7 ->get();

{tip} The unionAllmethod is also available and has the samemethod signature as union.

Where Clauses

Simple Where Clauses

You may use the where method on a query builder instance to add where clauses to the query. The
most basic call to where requires three arguments. The first argument is the name of the column. The
second argument is an operator, which can be any of the database’s supported operators. Finally,
the third argument is the value to evaluate against the column.

For example, here is a query that verifies the value of the “votes” column is equal to 100:

Database: Query Builder 446

1 $users = DB::table('users')->where('votes', '=', 100)->get();

For convenience, if you simply want to verify that a column is equal to a given value, you may pass
the value directly as the second argument to the where method:

1 $users = DB::table('users')->where('votes', 100)->get();

Of course, you may use a variety of other operators when writing a where clause:

1 $users = DB::table('users')

2 ->where('votes', '>=', 100)

3 ->get();

4

5 $users = DB::table('users')

6 ->where('votes', '<>', 100)

7 ->get();

8

9 $users = DB::table('users')

10 ->where('name', 'like', 'T%')

11 ->get();

You may also pass an array of conditions to the where function:

1 $users = DB::table('users')->where([

2 ['status', '=', '1'],

3 ['subscribed', '<>', '1'],

4])->get();

Or Statements

You may chain where constraints together as well as add or clauses to the query. The orWhere

method accepts the same arguments as the where method:

Database: Query Builder 447

1 $users = DB::table('users')

2 ->where('votes', '>', 100)

3 ->orWhere('name', 'John')

4 ->get();

Additional Where Clauses

whereBetween

The whereBetween method verifies that a column’s value is between two values:

1 $users = DB::table('users')

2 ->whereBetween('votes', [1, 100])->get();

whereNotBetween

The whereNotBetween method verifies that a column’s value lies outside of two values:

1 $users = DB::table('users')

2 ->whereNotBetween('votes', [1, 100])

3 ->get();

whereIn / whereNotIn

The whereIn method verifies that a given column’s value is contained within the given array:

1 $users = DB::table('users')

2 ->whereIn('id', [1, 2, 3])

3 ->get();

The whereNotIn method verifies that the given column’s value is not contained in the given array:

1 $users = DB::table('users')

Database: Query Builder 448

2 ->whereNotIn('id', [1, 2, 3])

3 ->get();

whereNull / whereNotNull

The whereNull method verifies that the value of the given column is NULL:

1 $users = DB::table('users')

2 ->whereNull('updated_at')

3 ->get();

The whereNotNull method verifies that the column’s value is not NULL:

1 $users = DB::table('users')

2 ->whereNotNull('updated_at')

3 ->get();

whereDate / whereMonth / whereDay / whereYear

The whereDate method may be used compare a column’s value against a date:

1 $users = DB::table('users')

2 ->whereDate('created_at', '2016-12-31')

3 ->get();

The whereMonth method may be used compare a column’s value against a specific month of a year:

1 $users = DB::table('users')

2 ->whereMonth('created_at', '12')

3 ->get();

The whereDay method may be used compare a column’s value against a specific day of a month:

Database: Query Builder 449

1 $users = DB::table('users')

2 ->whereDay('created_at', '31')

3 ->get();

The whereYear method may be used compare a column’s value against a specific year:

1 $users = DB::table('users')

2 ->whereYear('created_at', '2016')

3 ->get();

whereColumn

The whereColumn method may be used to verify that two columns are equal:

1 $users = DB::table('users')

2 ->whereColumn('first_name', 'last_name')

3 ->get();

You may also pass a comparison operator to the method:

1 $users = DB::table('users')

2 ->whereColumn('updated_at', '>', 'created_at')

3 ->get();

The whereColumn method can also be passed an array of multiple conditions. These conditions will
be joined using the and operator:

1 $users = DB::table('users')

2 ->whereColumn([

3 ['first_name', '=', 'last_name'],

4 ['updated_at', '>', 'created_at']

5])->get();

Database: Query Builder 450

Parameter Grouping

Sometimes you may need to create more advanced where clauses such as “where exists” clauses or
nested parameter groupings. The Laravel query builder can handle these as well. To get started, let’s
look at an example of grouping constraints within parenthesis:

1 DB::table('users')

2 ->where('name', '=', 'John')

3 ->orWhere(function ($query) {

4 $query->where('votes', '>', 100)

5 ->where('title', '<>', 'Admin');

6 })

7 ->get();

As you can see, passing a Closure into the orWhere method instructs the query builder to begin a
constraint group. The Closure will receive a query builder instance which you can use to set the
constraints that should be contained within the parenthesis group. The example above will produce
the following SQL:

1 select * from users where name = 'John' or (votes > 100 and title <> 'Admin')

Where Exists Clauses

The whereExistsmethod allows you to write where exists SQL clauses. The whereExistsmethod
accepts a Closure argument, which will receive a query builder instance allowing you to define the
query that should be placed inside of the “exists” clause:

1 DB::table('users')

2 ->whereExists(function ($query) {

3 $query->select(DB::raw(1))

4 ->from('orders')

5 ->whereRaw('orders.user_id = users.id');

6 })

7 ->get();

The query above will produce the following SQL:

Database: Query Builder 451

1 select * from users

2 where exists (

3 select 1 from orders where orders.user_id = users.id

4)

JSON Where Clauses

Laravel also supports querying JSON column types on databases that provide support for JSON
column types. Currently, this includes MySQL 5.7 and Postgres. To query a JSON column, use the
-> operator:

1 $users = DB::table('users')

2 ->where('options->language', 'en')

3 ->get();

4

5 $users = DB::table('users')

6 ->where('preferences->dining->meal', 'salad')

7 ->get();

Ordering, Grouping, Limit, & Offset

orderBy

The orderBymethod allows you to sort the result of the query by a given column. The first argument
to the orderBymethod should be the column youwish to sort by, while the second argument controls
the direction of the sort and may be either asc or desc:

1 $users = DB::table('users')

2 ->orderBy('name', 'desc')

3 ->get();

latest / oldest

The latest and oldest methods allow you to easily order results by date. By default, result will be
ordered by the created_at column. Or, you may pass the column name that you wish to sort by:

Database: Query Builder 452

1 $user = DB::table('users')

2 ->latest()

3 ->first();

inRandomOrder

The inRandomOrder method may be used to sort the query results randomly. For example, you may
use this method to fetch a random user:

1 $randomUser = DB::table('users')

2 ->inRandomOrder()

3 ->first();

groupBy / having / havingRaw

The groupBy and having methods may be used to group the query results. The having method’s
signature is similar to that of the where method:

1 $users = DB::table('users')

2 ->groupBy('account_id')

3 ->having('account_id', '>', 100)

4 ->get();

The havingRawmethodmay be used to set a raw string as the value of the having clause. For example,
we can find all of the departments with sales greater than $2,500:

1 $users = DB::table('orders')

2 ->select('department', DB::raw('SUM(price) as total_sales'))

3 ->groupBy('department')

4 ->havingRaw('SUM(price) > 2500')

5 ->get();

Database: Query Builder 453

skip / take

To limit the number of results returned from the query, or to skip a given number of results in the
query, you may use the skip and take methods:

1 $users = DB::table('users')->skip(10)->take(5)->get();

Alternatively, you may use the limit and offset methods:

1 $users = DB::table('users')

2 ->offset(10)

3 ->limit(5)

4 ->get();

Conditional Clauses

Sometimes you may want clauses to apply to a query only when something else is true. For instance
you may only want to apply a where statement if a given input value is present on the incoming
request. You may accomplish this using the when method:

1 $role = $request->input('role');

2

3 $users = DB::table('users')

4 ->when($role, function ($query) use ($role) {

5 return $query->where('role_id', $role);

6 })

7 ->get();

The when method only executes the given Closure when the first parameter is true. If the first
parameter is false, the Closure will not be executed.

You may pass another Closure as the third parameter to the whenmethod. This Closure will execute
if the first parameter evaluates as false. To illustrate how this feature may be used, we will use it
to configure the default sorting of a query:

Database: Query Builder 454

1 $sortBy = null;

2

3 $users = DB::table('users')

4 ->when($sortBy, function ($query) use ($sortBy) {

5 return $query->orderBy($sortBy);

6 }, function ($query) {

7 return $query->orderBy('name');

8 })

9 ->get();

Inserts

The query builder also provides an insertmethod for inserting records into the database table. The
insert method accepts an array of column names and values:

1 DB::table('users')->insert(

2 ['email' => 'john@example.com', 'votes' => 0]

3);

You may even insert several records into the table with a single call to insert by passing an array
of arrays. Each array represents a row to be inserted into the table:

1 DB::table('users')->insert([

2 ['email' => 'taylor@example.com', 'votes' => 0],

3 ['email' => 'dayle@example.com', 'votes' => 0]

4]);

Auto-Incrementing IDs

If the table has an auto-incrementing id, use the insertGetId method to insert a record and then
retrieve the ID:

Database: Query Builder 455

1 $id = DB::table('users')->insertGetId(

2 ['email' => 'john@example.com', 'votes' => 0]

3);

{note} When using PostgreSQL the insertGetId method expects the auto-incrementing
column to be named id. If you would like to retrieve the ID from a different “sequence”,
you may pass the sequence name as the second parameter to the insertGetId method.

Updates

Of course, in addition to inserting records into the database, the query builder can also update
existing records using the update method. The update method, like the insert method, accepts
an array of column and value pairs containing the columns to be updated. You may constrain the
update query using where clauses:

1 DB::table('users')

2 ->where('id', 1)

3 ->update(['votes' => 1]);

Updating JSON Columns

When updating a JSON column, you should use -> syntax to access the appropriate key in the JSON
object. This operation is only supported on databases that support JSON columns:

1 DB::table('users')

2 ->where('id', 1)

3 ->update(['options->enabled' => true]);

Increment & Decrement

The query builder also provides convenient methods for incrementing or decrementing the value of
a given column. This is simply a short-cut, providing a more expressive and terse interface compared
to manually writing the update statement.

Database: Query Builder 456

Both of these methods accept at least one argument: the column to modify. A second argument
may optionally be passed to control the amount by which the column should be incremented or
decremented:

1 DB::table('users')->increment('votes');

2

3 DB::table('users')->increment('votes', 5);

4

5 DB::table('users')->decrement('votes');

6

7 DB::table('users')->decrement('votes', 5);

You may also specify additional columns to update during the operation:

1 DB::table('users')->increment('votes', 1, ['name' => 'John']);

Deletes

The query builder may also be used to delete records from the table via the delete method. You
may constrain delete statements by adding where clauses before calling the delete method:

1 DB::table('users')->delete();

2

3 DB::table('users')->where('votes', '>', 100)->delete();

If you wish to truncate the entire table, which will remove all rows and reset the auto-incrementing
ID to zero, you may use the truncate method:

1 DB::table('users')->truncate();

Database: Query Builder 457

Pessimistic Locking

The query builder also includes a few functions to help you do “pessimistic locking” on your select
statements. To run the statement with a “shared lock”, you may use the sharedLock method on a
query. A shared lock prevents the selected rows from beingmodified until your transaction commits:

1 DB::table('users')->where('votes', '>', 100)->sharedLock()->get();

Alternatively, you may use the lockForUpdatemethod. A “for update” lock prevents the rows from
being modified or from being selected with another shared lock:

1 DB::table('users')->where('votes', '>', 100)->lockForUpdate()->get();

Pagination
• Introduction
• Basic Usage A> - Paginating Query Builder Results A> - Paginating Eloquent Results A> -
Manually Creating A Paginator

• Displaying Pagination Results A> - Converting Results To JSON
• Customizing The Pagination View
• Paginator Instance Methods

Introduction

In other frameworks, pagination can be very painful. Laravel’s paginator is integrated with the
query builder and Eloquent ORM and provides convenient, easy-to-use pagination of database
results out of the box. The HTML generated by the paginator is compatible with the Bootstrap
CSS framework²³³.

Basic Usage

Paginating Query Builder Results

There are several ways to paginate items. The simplest is by using the paginatemethod on the query
builder or an Eloquent query. The paginate method automatically takes care of setting the proper
limit and offset based on the current page being viewed by the user. By default, the current page is
detected by the value of the page query string argument on the HTTP request. Of course, this value
is automatically detected by Laravel, and is also automatically inserted into links generated by the
paginator.

In this example, the only argument passed to the paginatemethod is the number of items you would
like displayed “per page”. In this case, let’s specify that we would like to display 15 items per page:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\DB;

6 use App\Http\Controllers\Controller;

²³³https://getbootstrap.com/

https://getbootstrap.com/
https://getbootstrap.com/
https://getbootstrap.com/

Pagination 459

7

8 class UserController extends Controller

9 {

10 /**

11 * Show all of the users for the application.

12 *

13 * @return Response

14 */

15 public function index()

16 {

17 $users = DB::table('users')->paginate(15);

18

19 return view('user.index', ['users' => $users]);

20 }

21 }

{note} Currently, pagination operations that use a groupBy statement cannot be executed
efficiently by Laravel. If you need to use a groupBy with a paginated result set, it is
recommended that you query the database and create a paginator manually.

“Simple Pagination”

If you only need to display simple “Next” and “Previous” links in your pagination view, you may use
the simplePaginatemethod to perform a more efficient query. This is very useful for large datasets
when you do not need to display a link for each page number when rendering your view:

1 $users = DB::table('users')->simplePaginate(15);

Paginating Eloquent Results

You may also paginate Eloquent queries. In this example, we will paginate the User model with 15

items per page. As you can see, the syntax is nearly identical to paginating query builder results:

1 $users = App\User::paginate(15);

Of course, you may call paginate after setting other constraints on the query, such as where clauses:

Pagination 460

1 $users = User::where('votes', '>', 100)->paginate(15);

You may also use the simplePaginate method when paginating Eloquent models:

1 $users = User::where('votes', '>', 100)->simplePaginate(15);

Manually Creating A Paginator

Sometimes you may wish to create a pagination instance manually, passing it an array of items. You
may do so by creating either an Illuminate\Pagination\Paginator or Illuminate\Pagination\LengthAwarePaginator
instance, depending on your needs.

The Paginator class does not need to know the total number of items in the result set; however,
because of this, the class does not have methods for retrieving the index of the last page. The
LengthAwarePaginator accepts almost the same arguments as the Paginator; however, it does
require a count of the total number of items in the result set.

In other words, the Paginator corresponds to the simplePaginatemethod on the query builder and
Eloquent, while the LengthAwarePaginator corresponds to the paginate method.

{note} When manually creating a paginator instance, you should manually “slice” the
array of results you pass to the paginator. If you’re unsure how to do this, check out the
array_slice²³⁴ PHP function.

Displaying Pagination Results

When calling the paginatemethod, youwill receive an instance of Illuminate\Pagination\LengthAwarePaginator.
When calling the simplePaginatemethod, youwill receive an instance of Illuminate\Pagination\Paginator.
These objects provide several methods that describe the result set. In addition to these helpers
methods, the paginator instances are iterators and may be looped as an array. So, once you have
retrieved the results, you may display the results and render the page links using Blade:

1 <div class="container">

2 @foreach ($users as $user)

3 {{ $user->name }}

4 @endforeach

²³⁴https://secure.php.net/manual/en/function.array-slice.php

https://secure.php.net/manual/en/function.array-slice.php
https://secure.php.net/manual/en/function.array-slice.php

Pagination 461

5 </div>

6

7 {{ $users->links() }}

The links method will render the links to the rest of the pages in the result set. Each of these links
will already contain the proper page query string variable. Remember, the HTML generated by the
links method is compatible with the Bootstrap CSS framework²³⁵.

Customizing The Paginator URI

The setPathmethod allows you to customize the URI used by the paginator when generating links.
For example, if youwant the paginator to generate links like http://example.com/custom/url?page=N,
you should pass custom/url to the setPath method:

1 Route::get('users', function () {

2 $users = App\User::paginate(15);

3

4 $users->setPath('custom/url');

5

6 //

7 });

Appending To Pagination Links

You may append to the query string of pagination links using the appends method. For example, to
append sort=votes to each pagination link, you should make the following call to appends:

1 {{ $users->appends(['sort' => 'votes'])->links() }}

If you wish to append a “hash fragment” to the paginator’s URLs, youmay use the fragmentmethod.
For example, to append #foo to the end of each pagination link, make the following call to the
fragment method:

²³⁵https://getbootstrap.com

https://getbootstrap.com/
https://getbootstrap.com/

Pagination 462

1 {{ $users->fragment('foo')->links() }}

Converting Results To JSON

The Laravel paginator result classes implement the Illuminate\Contracts\Support\Jsonable

Interface contract and expose the toJsonmethod, so it’s very easy to convert your pagination results
to JSON. You may also convert a paginator instance to JSON by simply returning it from a route or
controller action:

1 Route::get('users', function () {

2 return App\User::paginate();

3 });

The JSON from the paginator will include meta information such as total, current_page, last_-
page, and more. The actual result objects will be available via the data key in the JSON array. Here
is an example of the JSON created by returning a paginator instance from a route:

1 {

2 "total": 50,

3 "per_page": 15,

4 "current_page": 1,

5 "last_page": 4,

6 "next_page_url": "http://laravel.app?page=2",

7 "prev_page_url": null,

8 "from": 1,

9 "to": 15,

10 "data":[

11 {

12 // Result Object

13 },

14 {

15 // Result Object

16 }

17]

18 }

Pagination 463

Customizing The Pagination View

By default, the views rendered to display the pagination links are compatible with the Bootstrap
CSS framework. However, if you are not using Bootstrap, you are free to define your own views to
render these links. When calling the links method on a paginator instance, pass the view name as
the first argument to the method:

1 {{ $paginator->links('view.name') }}

However, the easiest way to customize the pagination views is by exporting them to your
resources/views/vendor directory using the vendor:publish command:

1 php artisan vendor:publish --tag=laravel-pagination

This command will place the views in the resources/views/vendor/pagination directory. The
default.blade.php file within this directory corresponds to the default pagination view. Simply
edit this file to modify the pagination HTML.

Paginator Instance Methods

Each paginator instance provides additional pagination information via the following methods:

• $results->count()

• $results->currentPage()

• $results->firstItem()

• $results->hasMorePages()

• $results->lastItem()

• $results->lastPage() (Not available when using simplePaginate)

• $results->nextPageUrl()

• $results->perPage()

• $results->previousPageUrl()

• $results->total() (Not available when using simplePaginate)

• $results->url($page)

Database: Migrations
• Introduction
• Generating Migrations
• Migration Structure
• Running Migrations A> - Rolling Back Migrations
• Tables A> - Creating Tables A> - Renaming / Dropping Tables
• Columns A> - Creating Columns A> - Column Modifiers A> - Modifying Columns A> -
Dropping Columns

• Indexes A> - Creating Indexes A> - Dropping Indexes A> - Foreign Key Constraints

Introduction

Migrations are like version control for your database, allowing your team to easily modify and share
the application’s database schema. Migrations are typically paired with Laravel’s schema builder to
easily build your application’s database schema. If you have ever had to tell a teammate to manually
add a column to their local database schema, you’ve faced the problem that database migrations
solve.

The Laravel Schema facade provides database agnostic support for creating and manipulating tables
across all of Laravel’s supported database systems.

Generating Migrations

To create a migration, use the make:migration Artisan command:

1 php artisan make:migration create_users_table

The newmigration will be placed in your database/migrations directory. Each migration file name
contains a timestamp which allows Laravel to determine the order of the migrations.

The --table and --create options may also be used to indicate the name of the table and whether
the migration will be creating a new table. These options simply pre-fill the generated migration
stub file with the specified table:

Database: Migrations 465

1 php artisan make:migration create_users_table --create=users

2

3 php artisan make:migration add_votes_to_users_table --table=users

If you would like to specify a custom output path for the generated migration, you may use the
--path option when executing the make:migration command. The given path should be relative to
your application’s base path.

Migration Structure

A migration class contains two methods: up and down. The up method is used to add new tables,
columns, or indexes to your database, while the down method should simply reverse the operations
performed by the up method.

Within both of these methods you may use the Laravel schema builder to expressively create and
modify tables. To learn about all of the methods available on the Schema builder, check out its
documentation. For example, this migration example creates a flights table:

1 <?php

2

3 use Illuminate\Support\Facades\Schema;

4 use Illuminate\Database\Schema\Blueprint;

5 use Illuminate\Database\Migrations\Migration;

6

7 class CreateFlightsTable extends Migration

8 {

9 /**

10 * Run the migrations.

11 *

12 * @return void

13 */

14 public function up()

15 {

16 Schema::create('flights', function (Blueprint $table) {

17 $table->increments('id');

18 $table->string('name');

19 $table->string('airline');

20 $table->timestamps();

21 });

22 }

23

Database: Migrations 466

24 /**

25 * Reverse the migrations.

26 *

27 * @return void

28 */

29 public function down()

30 {

31 Schema::drop('flights');

32 }

33 }

Running Migrations

To run all of your outstanding migrations, execute the migrate Artisan command:

1 php artisan migrate

{note} If you are using the Homestead virtual machine, you should run this command
from within your virtual machine.

Forcing Migrations To Run In Production

Somemigration operations are destructive, whichmeans theymay cause you to lose data. In order to
protect you from running these commands against your production database, you will be prompted
for confirmation before the commands are executed. To force the commands to run without a
prompt, use the --force flag:

1 php artisan migrate --force

Rolling Back Migrations

To rollback the latest migration operation, you may use the rollback command. This command
rolls back the last “batch” of migrations, which may include multiple migration files:

Database: Migrations 467

1 php artisan migrate:rollback

You may rollback a limited number of migrations by providing the step option to the rollback

command. For example, the following command will rollback the last five migrations:

1 php artisan migrate:rollback --step=5

The migrate:reset command will roll back all of your application’s migrations:

1 php artisan migrate:reset

Rollback & Migrate In Single Command

The migrate:refresh command will roll back all of your migrations and then execute the migrate
command. This command effectively re-creates your entire database:

1 php artisan migrate:refresh

2

3 // Refresh the database and run all database seeds...

4 php artisan migrate:refresh --seed

You may rollback & re-migrate a limited number of migrations by providing the step option to the
refresh command. For example, the following command will rollback & re-migrate the last five
migrations:

1 php artisan migrate:refresh --step=5

Database: Migrations 468

Tables

Creating Tables

To create a new database table, use the create method on the Schema facade. The create method
accepts two arguments. The first is the name of the table, while the second is a Closure which
receives a Blueprint object that may be used to define the new table:

1 Schema::create('users', function (Blueprint $table) {

2 $table->increments('id');

3 });

Of course, when creating the table, you may use any of the schema builder’s column methods to
define the table’s columns.

Checking For Table / Column Existence

You may easily check for the existence of a table or column using the hasTable and hasColumn

methods:

1 if (Schema::hasTable('users')) {

2 //

3 }

4

5 if (Schema::hasColumn('users', 'email')) {

6 //

7 }

Connection & Storage Engine

If you want to perform a schema operation on a database connection that is not your default
connection, use the connection method:

1 Schema::connection('foo')->create('users', function ($table) {

2 $table->increments('id');

3 });

Database: Migrations 469

You may use the engine property on the schema builder to define the table’s storage engine:

1 Schema::create('users', function ($table) {

2 $table->engine = 'InnoDB';

3

4 $table->increments('id');

5 });

Renaming / Dropping Tables

To rename an existing database table, use the rename method:

1 Schema::rename($from, $to);

To drop an existing table, you may use the drop or dropIfExists methods:

1 Schema::drop('users');

2

3 Schema::dropIfExists('users');

Renaming Tables With Foreign Keys

Before renaming a table, you should verify that any foreign key constraints on the table have an
explicit name in your migration files instead of letting Laravel assign a convention based name.
Otherwise, the foreign key constraint name will refer to the old table name.

Columns

Creating Columns

The table method on the Schema facade may be used to update existing tables. Like the create

method, the tablemethod accepts two arguments: the name of the table and a Closure that receives
a Blueprint instance you may use to add columns to the table:

Database: Migrations 470

1 Schema::table('users', function ($table) {

2 $table->string('email');

3 });

Available Column Types

Of course, the schema builder contains a variety of column types that youmay specify when building
your tables:

Command | Description ————- | ————- $table->bigIncrements('id'); | Incrementing ID
(primary key) using a “UNSIGNED BIG INTEGER” equivalent. $table->bigInteger('votes'); |
BIGINT equivalent for the database. $table->binary('data'); | BLOB equivalent for the database.
$table->boolean('confirmed'); | BOOLEAN equivalent for the database. $table->char('name',
4); | CHAR equivalent with a length. $table->date('created_at'); | DATE equivalent for the
database. $table->dateTime('created_at'); | DATETIME equivalent for the database. $table-
>dateTimeTz('created_at'); | DATETIME (with timezone) equivalent for the database. $table-
>decimal('amount', 5, 2); | DECIMAL equivalentwith a precision and scale. $table->double('column',
15, 8); | DOUBLE equivalent with precision, 15 digits in total and 8 after the decimal point. $table-
>enum('choices', ['foo', 'bar']); | ENUMequivalent for the database. $table->float('amount',
8, 2); | FLOAT equivalent for the database, 8 digits in total and 2 after the decimal point. $table-
>increments('id'); | Incrementing ID (primary key) using a “UNSIGNED INTEGER” equivalent.
$table->integer('votes'); | INTEGER equivalent for the database. $table->ipAddress('visitor');
| IP address equivalent for the database. $table->json('options'); | JSON equivalent for the
database. $table->jsonb('options'); | JSONB equivalent for the database. $table->longText('description');
| LONGTEXT equivalent for the database. $table->macAddress('device'); | MAC address equiv-
alent for the database. $table->mediumIncrements('id'); | Incrementing ID (primary key) using
a “UNSIGNED MEDIUM INTEGER” equivalent. $table->mediumInteger('numbers'); | MEDIU-
MINT equivalent for the database. $table->mediumText('description'); | MEDIUMTEXT equiv-
alent for the database. $table->morphs('taggable'); | Adds unsigned INTEGER taggable_id

and STRING taggable_type. $table->nullableTimestamps(); | Same as timestamps(). $table-
>rememberToken(); | Adds remember_token as VARCHAR(100) NULL. $table->smallIncrements('id');
| Incrementing ID (primary key) using a “UNSIGNED SMALL INTEGER” equivalent. $table-
>smallInteger('votes'); | SMALLINT equivalent for the database. $table->softDeletes();
| Adds nullable deleted_at column for soft deletes. $table->string('email'); | VARCHAR
equivalent column. $table->string('name', 100); | VARCHAR equivalent with a length. $table-
>text('description'); | TEXT equivalent for the database. $table->time('sunrise'); | TIME
equivalent for the database. $table->timeTz('sunrise'); | TIME (with timezone) equivalent for
the database. $table->tinyInteger('numbers'); | TINYINT equivalent for the database. $table-
>timestamp('added_on'); | TIMESTAMP equivalent for the database. $table->timestampTz('added_-
on'); | TIMESTAMP (with timezone) equivalent for the database. $table->timestamps(); |

Database: Migrations 471

Adds nullable created_at and updated_at columns. $table->timestampsTz(); | Adds nullable
created_at and updated_at (with timezone) columns. $table->unsignedBigInteger('votes');
| Unsigned BIGINT equivalent for the database. $table->unsignedInteger('votes'); | Unsigned
INT equivalent for the database. $table->unsignedMediumInteger('votes'); | Unsigned MEDIU-
MINT equivalent for the database. $table->unsignedSmallInteger('votes'); | Unsigned SMALL-
INT equivalent for the database. $table->unsignedTinyInteger('votes'); | Unsigned TINYINT
equivalent for the database. $table->uuid('id'); | UUID equivalent for the database.

Column Modifiers

In addition to the column types listed above, there are several column “modifiers” youmay use while
adding a column to a database table. For example, to make the column “nullable”, you may use the
nullable method:

1 Schema::table('users', function ($table) {

2 $table->string('email')->nullable();

3 });

Below is a list of all the available column modifiers. This list does not include the index modifiers:

Modifier | Description ————- | ————- ->after('column') | Place the column “after” another col-
umn (MySQL Only) ->comment('my comment') | Add a comment to a column ->default($value)

| Specify a “default” value for the column ->first() | Place the column “first” in the table (MySQL
Only) ->nullable() | Allow NULL values to be inserted into the column ->storedAs($expression)
| Create a stored generated column (MySQL Only) ->unsigned() | Set integer columns to UNSIGNED
->virtualAs($expression) | Create a virtual generated column (MySQL Only)

 ### Modifying Columns {#migrations-modifying-columns}

Prerequisites

Before modifying a column, be sure to add the doctrine/dbal dependency to your composer.json
file. The Doctrine DBAL library is used to determine the current state of the column and create the
SQL queries needed to make the specified adjustments to the column:

1 composer require doctrine/dbal

Database: Migrations 472

Updating Column Attributes

The change method allows you to modify some existing column types to a new type or modify the
column’s attributes. For example, you may wish to increase the size of a string column. To see the
change method in action, let’s increase the size of the name column from 25 to 50:

1 Schema::table('users', function ($table) {

2 $table->string('name', 50)->change();

3 });

We could also modify a column to be nullable:

1 Schema::table('users', function ($table) {

2 $table->string('name', 50)->nullable()->change();

3 });

{note} The following column types can not be “changed”: char, double, enum, medi-
umInteger, timestamp, tinyInteger, ipAddress, json, jsonb, macAddress, mediumIn-
crements, morphs, nullableTimestamps, softDeletes, timeTz, timestampTz, timestamps,
timestampsTz, unsignedMediumInteger, unsignedTinyInteger, uuid.

Renaming Columns

To rename a column, you may use the renameColumn method on the Schema builder. Before
renaming a column, be sure to add the doctrine/dbal dependency to your composer.json file:

1 Schema::table('users', function ($table) {

2 $table->renameColumn('from', 'to');

3 });

{note} Renaming any column in a table that also has a column of type enum is not
currently supported.

Database: Migrations 473

Dropping Columns

To drop a column, use the dropColumnmethod on the Schema builder. Before dropping columns from
a SQLite database, you will need to add the doctrine/dbal dependency to your composer.json file
and run the composer update command in your terminal to install the library:

1 Schema::table('users', function ($table) {

2 $table->dropColumn('votes');

3 });

Youmay dropmultiple columns from a table by passing an array of column names to the dropColumn
method:

1 Schema::table('users', function ($table) {

2 $table->dropColumn(['votes', 'avatar', 'location']);

3 });

{note} Dropping or modifying multiple columns within a single migration while using
a SQLite database is not supported.

Indexes

Creating Indexes

The schema builder supports several types of indexes. First, let’s look at an example that specifies
a column’s values should be unique. To create the index, we can simply chain the unique method
onto the column definition:

1 $table->string('email')->unique();

Alternatively, you may create the index after defining the column. For example:

1 $table->unique('email');

Database: Migrations 474

You may even pass an array of columns to an index method to create a compound index:

1 $table->index(['account_id', 'created_at']);

Laravel will automatically generate a reasonable index name, but you may pass a second argument
to the method to specify the name yourself:

1 $table->index('email', 'my_index_name');

Available Index Types

Command | Description ————- | ————- $table->primary('id'); | Add a primary key. $table-
>primary(['first', 'last']); | Add composite keys. $table->unique('email'); | Add a unique
index. $table->unique('state', 'my_index_name'); | Add a custom index name. $table->unique(['first',
'last']); | Add a composite unique index. $table->index('state'); | Add a basic index.

Dropping Indexes

To drop an index, you must specify the index’s name. By default, Laravel automatically assigns a
reasonable name to the indexes. Simply concatenate the table name, the name of the indexed column,
and the index type. Here are some examples:

Command | Description ————- | ————- $table->dropPrimary('users_id_primary'); | Drop a
primary key from the “users” table. $table->dropUnique('users_email_unique'); | Drop a unique
index from the “users” table. $table->dropIndex('geo_state_index'); | Drop a basic index from
the “geo” table.

If you pass an array of columns into a method that drops indexes, the conventional index name will
be generated based on the table name, columns and key type:

1 Schema::table('geo', function ($table) {

2 $table->dropIndex(['state']); // Drops index 'geo_state_index'

3 });

Database: Migrations 475

Foreign Key Constraints

Laravel also provides support for creating foreign key constraints, which are used to force referential
integrity at the database level. For example, let’s define a user_id column on the posts table that
references the id column on a users table:

1 Schema::table('posts', function ($table) {

2 $table->integer('user_id')->unsigned();

3

4 $table->foreign('user_id')->references('id')->on('users');

5 });

You may also specify the desired action for the “on delete” and “on update” properties of the
constraint:

1 $table->foreign('user_id')

2 ->references('id')->on('users')

3 ->onDelete('cascade');

To drop a foreign key, you may use the dropForeign method. Foreign key constraints use the same
naming convention as indexes. So, we will concatenate the table name and the columns in the
constraint then suffix the name with “_foreign”:

1 $table->dropForeign('posts_user_id_foreign');

Or, you may pass an array value which will automatically use the conventional constraint name
when dropping:

1 $table->dropForeign(['user_id']);

You may enable or disable foreign key constraints within your migrations by using the following
methods:

Database: Migrations 476

1 Schema::enableForeignKeyConstraints();

2

3 Schema::disableForeignKeyConstraints();

Database: Seeding
• Introduction
• Writing Seeders A> - Using Model Factories A> - Calling Additional Seeders
• Running Seeders

Introduction

Laravel includes a simple method of seeding your database with test data using seed classes. All
seed classes are stored in the database/seeds directory. Seed classes may have any name you wish,
but probably should follow some sensible convention, such as UsersTableSeeder, etc. By default, a
DatabaseSeeder class is defined for you. From this class, you may use the callmethod to run other
seed classes, allowing you to control the seeding order.

Writing Seeders

To generate a seeder, execute the make:seeder Artisan command. All seeders generated by the
framework will be placed in the database/seeds directory:

1 php artisan make:seeder UsersTableSeeder

A seeder class only contains one method by default: run. This method is called when the db:seed
Artisan command is executed. Within the run method, you may insert data into your database
however you wish. You may use the query builder to manually insert data or you may use Eloquent
model factories.

As an example, let’s modify the default DatabaseSeeder class and add a database insert statement
to the run method:

1 <?php

2

3 use Illuminate\Database\Seeder;

4 use Illuminate\Database\Eloquent\Model;

5

6 class DatabaseSeeder extends Seeder

7 {

Database: Seeding 478

8 /**

9 * Run the database seeds.

10 *

11 * @return void

12 */

13 public function run()

14 {

15 DB::table('users')->insert([

16 'name' => str_random(10),

17 'email' => str_random(10).'@gmail.com',

18 'password' => bcrypt('secret'),

19]);

20 }

21 }

Using Model Factories

Of course, manually specifying the attributes for each model seed is cumbersome. Instead, you can
use model factories to conveniently generate large amounts of database records. First, review the
model factory documentation to learn how to define your factories. Once you have defined your
factories, you may use the factory helper function to insert records into your database.

For example, let’s create 50 users and attach a relationship to each user:

1 /**

2 * Run the database seeds.

3 *

4 * @return void

5 */

6 public function run()

7 {

8 factory(App\User::class, 50)->create()->each(function ($u) {

9 $u->posts()->save(factory(App\Post::class)->make());

10 });

11 }

Calling Additional Seeders

Within the DatabaseSeeder class, you may use the call method to execute additional seed classes.
Using the call method allows you to break up your database seeding into multiple files so that no

Database: Seeding 479

single seeder class becomes overwhelmingly large. Simply pass the name of the seeder class you
wish to run:

1 /**

2 * Run the database seeds.

3 *

4 * @return void

5 */

6 public function run()

7 {

8 $this->call(UsersTableSeeder::class);

9 $this->call(PostsTableSeeder::class);

10 $this->call(CommentsTableSeeder::class);

11 }

Running Seeders

Once you have written your seeder classes, you may use the db:seedArtisan command to seed your
database. By default, the db:seed command runs the DatabaseSeeder class, which may be used to
call other seed classes. However, you may use the --class option to specify a specific seeder class
to run individually:

1 php artisan db:seed

2

3 php artisan db:seed --class=UsersTableSeeder

You may also seed your database using the migrate:refresh command, which will also rollback
and re-run all of your migrations. This command is useful for completely re-building your database:

1 php artisan migrate:refresh --seed

Redis
• Introduction A> - Configuration A> - Predis A> - PhpRedis
• Interacting With Redis A> - Pipelining Commands
• Pub / Sub

Introduction

Redis²³⁶ is an open source, advanced key-value store. It is often referred to as a data structure server
since keys can contain strings²³⁷, hashes²³⁸, lists²³⁹, sets²⁴⁰, and sorted sets²⁴¹.

Before using Redis with Laravel, you will either need to install the predis/predis package via
Composer:

1 composer require predis/predis

Alternatively, you may install the PhpRedis²⁴² PHP extension via PECL. The extension is more
complex to install but may yield better performance for applications that make heavy use of Redis.

Configuration

The Redis configuration for your application is located in the config/database.php configuration
file. Within this file, you will see a redis array containing the Redis servers utilized by your
application:

1 'redis' => [

2

3 'client' => 'predis',

4

5 'cluster' => false,

²³⁶http://redis.io
²³⁷http://redis.io/topics/data-types#strings
²³⁸http://redis.io/topics/data-types#hashes
²³⁹http://redis.io/topics/data-types#lists
²⁴⁰http://redis.io/topics/data-types#sets
²⁴¹http://redis.io/topics/data-types#sorted-sets
²⁴²https://github.com/phpredis/phpredis

http://redis.io/
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets
https://github.com/phpredis/phpredis
http://redis.io/
http://redis.io/topics/data-types#strings
http://redis.io/topics/data-types#hashes
http://redis.io/topics/data-types#lists
http://redis.io/topics/data-types#sets
http://redis.io/topics/data-types#sorted-sets
https://github.com/phpredis/phpredis

Redis 481

6

7 'default' => [

8 'host' => env('REDIS_HOST', 'localhost'),

9 'password' => env('REDIS_PASSWORD', null),

10 'port' => env('REDIS_PORT', 6379),

11 'database' => 0,

12],

13

14],

The default server configuration should suffice for development. However, you are free to modify
this array based on your environment. Each Redis server defined in your configuration file is
required to have a name, host, and port.

The cluster option will instruct the Laravel Redis client to perform client-side sharding across your
Redis nodes, allowing you to pool nodes and create a large amount of available RAM. However, note
that client-side sharding does not handle failover; therefore, is primarily suited for cached data that
is available from another primary data store.

Predis

In addition to the default host, port, database, and password server configuration options, Predis
supports additional connection parameters²⁴³ that may be defined for each of your Redis servers. To
utilize these additional configuration options, simply add them to your Redis server configuration
in the config/database.php configuration file:

1 'default' => [

2 'host' => env('REDIS_HOST', 'localhost'),

3 'password' => env('REDIS_PASSWORD', null),

4 'port' => env('REDIS_PORT', 6379),

5 'database' => 0,

6 'read_write_timeout' => 60,

7],

PhpRedis

{note} If you have the PhpRedis PHP extension installed via PECL, you will need to
rename the Redis alias in your config/app.php configuration file.

²⁴³https://github.com/nrk/predis/wiki/Connection-Parameters

https://github.com/nrk/predis/wiki/Connection-Parameters
https://github.com/nrk/predis/wiki/Connection-Parameters

Redis 482

To utilize the PhpRedix extension, you should change the client option of your Redis configuration
to phpredis. This option is found in your config/database.php configuration file:

1 'redis' => [

2

3 'client' => 'phpredis',

4

5 // Rest of Redis configuration...

6],

In addition to the default host, port, database, and password server configuration options, PhpRedis
supports the following additional connection parameters: persistent, prefix, read_timeout and
timeout. You may add any of these options to your Redis server configuration in the config/-

database.php configuration file:

1 'default' => [

2 'host' => env('REDIS_HOST', 'localhost'),

3 'password' => env('REDIS_PASSWORD', null),

4 'port' => env('REDIS_PORT', 6379),

5 'database' => 0,

6 'read_timeout' => 60,

7],

Interacting With Redis

You may interact with Redis by calling various methods on the Redis facade. The Redis facade
supports dynamic methods, meaning you may call any Redis command²⁴⁴ on the facade and the
command will be passed directly to Redis. In this example, we will call the Redis GET command by
calling the get method on the Redis facade:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\Redis;

6 use App\Http\Controllers\Controller;

²⁴⁴http://redis.io/commands

http://redis.io/commands
http://redis.io/commands

Redis 483

7

8 class UserController extends Controller

9 {

10 /**

11 * Show the profile for the given user.

12 *

13 * @param int $id

14 * @return Response

15 */

16 public function showProfile($id)

17 {

18 $user = Redis::get('user:profile:'.$id);

19

20 return view('user.profile', ['user' => $user]);

21 }

22 }

Of course, as mentioned above, you may call any of the Redis commands on the Redis facade.
Laravel uses magic methods to pass the commands to the Redis server, so simply pass the arguments
the Redis command expects:

1 Redis::set('name', 'Taylor');

2

3 $values = Redis::lrange('names', 5, 10);

Alternatively, you may also pass commands to the server using the commandmethod, which accepts
the name of the command as its first argument, and an array of values as its second argument:

1 $values = Redis::command('lrange', ['name', 5, 10]);

Using Multiple Redis Connections

You may get a Redis instance by calling the Redis::connection method:

Redis 484

1 $redis = Redis::connection();

This will give you an instance of the default Redis server. If you are not using server clustering, you
may pass the server name to the connectionmethod to get a specific server as defined in your Redis
configuration:

1 $redis = Redis::connection('other');

Pipelining Commands

Pipelining should be used when you need to send many commands to the server in one operation.
The pipelinemethod accepts one argument: a Closure that receives a Redis instance. Youmay issue
all of your commands to this Redis instance and they will all be executed within a single operation:

1 Redis::pipeline(function ($pipe) {

2 for ($i = 0; $i < 1000; $i++) {

3 $pipe->set("key:$i", $i);

4 }

5 });

Pub / Sub

Laravel provides a convenient interface to the Redis publish and subscribe commands. These Redis
commands allow you to listen for messages on a given “channel”. You may publish messages to the
channel from another application, or even using another programming language, allowing easy
communication between applications and processes.

First, let’s setup a channel listener using the subscribe method. We’ll place this method call within
an Artisan command since calling the subscribe method begins a long-running process:

1 <?php

2

3 namespace App\Console\Commands;

4

Redis 485

5 use Illuminate\Console\Command;

6 use Illuminate\Support\Facades\Redis;

7

8 class RedisSubscribe extends Command

9 {

10 /**

11 * The name and signature of the console command.

12 *

13 * @var string

14 */

15 protected $signature = 'redis:subscribe';

16

17 /**

18 * The console command description.

19 *

20 * @var string

21 */

22 protected $description = 'Subscribe to a Redis channel';

23

24 /**

25 * Execute the console command.

26 *

27 * @return mixed

28 */

29 public function handle()

30 {

31 Redis::subscribe(['test-channel'], function ($message) {

32 echo $message;

33 });

34 }

35 }

Now we may publish messages to the channel using the publish method:

1 Route::get('publish', function () {

2 // Route logic...

3

4 Redis::publish('test-channel', json_encode(['foo' => 'bar']));

5 });

Redis 486

Wildcard Subscriptions

Using the psubscribe method, you may subscribe to a wildcard channel, which may be useful for
catching all messages on all channels. The $channel name will be passed as the second argument to
the provided callback Closure:

1 Redis::psubscribe(['*'], function ($message, $channel) {

2 echo $message;

3 });

4

5 Redis::psubscribe(['users.*'], function ($message, $channel) {

6 echo $message;

7 });

Eloquent: Getting Started
• Introduction
• Defining Models A> - Eloquent Model Conventions
• Retrieving Models A> - Collections A> - Chunking Results
• Retrieving Single Models / Aggregates A> - Retrieving Aggregates
• Inserting & Updating Models A> - Inserts A> - Updates A> - Mass Assignment A> - Other
Creation Methods

• Deleting Models A> - Soft Deleting A> - Querying Soft Deleted Models
• Query Scopes A> - Global Scopes A> - Local Scopes
• Events A> - Observers

Introduction

The Eloquent ORM includedwith Laravel provides a beautiful, simple ActiveRecord implementation
for working with your database. Each database table has a corresponding “Model” which is used to
interact with that table. Models allow you to query for data in your tables, as well as insert new
records into the table.

Before getting started, be sure to configure a database connection in config/database.php. For more
information on configuring your database, check out the documentation.

Defining Models

To get started, let’s create an Eloquent model. Models typically live in the app directory, but you
are free to place them anywhere that can be auto-loaded according to your composer.json file. All
Eloquent models extend Illuminate\Database\Eloquent\Model class.

The easiest way to create a model instance is using the make:model Artisan command:

1 php artisan make:model User

If you would like to generate a database migration when you generate the model, you may use the
--migration or -m option:

Eloquent: Getting Started 488

1 php artisan make:model User --migration

2

3 php artisan make:model User -m

Eloquent Model Conventions

Now, let’s look at an example Flight model, which we will use to retrieve and store information
from our flights database table:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 //

10 }

Table Names

Note that we did not tell Eloquent which table to use for our Flight model. By convention, the
“snake case”, plural name of the class will be used as the table name unless another name is explicitly
specified. So, in this case, Eloquent will assume the Flightmodel stores records in the flights table.
You may specify a custom table by defining a table property on your model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The table associated with the model.

Eloquent: Getting Started 489

11 *

12 * @var string

13 */

14 protected $table = 'my_flights';

15 }

Primary Keys

Eloquent will also assume that each table has a primary key column named id. You may define a
$primaryKey property to override this convention.

In addition, Eloquent assumes that the primary key is an incrementing integer value, which means
that by default the primary key will be cast to an int automatically. If you wish to use a non-
incrementing or a non-numeric primary key you must set the public $incrementing property on
your model to false.

Timestamps

By default, Eloquent expects created_at and updated_at columns to exist on your tables. If you do
not wish to have these columns automatically managed by Eloquent, set the $timestamps property
on your model to false:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * Indicates if the model should be timestamped.

11 *

12 * @var bool

13 */

14 public $timestamps = false;

15 }

If you need to customize the format of your timestamps, set the $dateFormat property on your
model. This property determines how date attributes are stored in the database, as well as their
format when the model is serialized to an array or JSON:

Eloquent: Getting Started 490

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The storage format of the model's date columns.

11 *

12 * @var string

13 */

14 protected $dateFormat = 'U';

15 }

If you need to customize the names of the columns used to store the timestamps, you may set the
CREATED_AT and UPDATED_AT constants in your model:

1 <?php

2

3 class Flight extends Model

4 {

5 const CREATED_AT = 'creation_date';

6 const UPDATED_AT = 'last_update';

7 }

Database Connection

By default, all Eloquent models will use the default database connection configured for your
application. If you would like to specify a different connection for the model, use the $connection
property:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

Eloquent: Getting Started 491

6

7 class Flight extends Model

8 {

9 /**

10 * The connection name for the model.

11 *

12 * @var string

13 */

14 protected $connection = 'connection-name';

15 }

Retrieving Models

Once you have created a model and its associated database table, you are ready to start retrieving
data from your database. Think of each Eloquent model as a powerful query builder allowing you
to fluently query the database table associated with the model. For example:

1 <?php

2

3 use App\Flight;

4

5 $flights = App\Flight::all();

6

7 foreach ($flights as $flight) {

8 echo $flight->name;

9 }

Adding Additional Constraints

The Eloquent all method will return all of the results in the model’s table. Since each Eloquent
model serves as a query builder, you may also add constraints to queries, and then use the get

method to retrieve the results:

1 $flights = App\Flight::where('active', 1)

2 ->orderBy('name', 'desc')

Eloquent: Getting Started 492

3 ->take(10)

4 ->get();

{tip} Since Eloquent models are query builders, you should review all of the methods
available on the query builder. You may use any of these methods in your Eloquent
queries.

Collections

For Eloquent methods like all and get which retrieve multiple results, an instance of Illumi-

nate\Database\Eloquent\Collection will be returned. The Collection class provides a variety of
helpful methods for working with your Eloquent results:

1 $flights = $flights->reject(function ($flight) {

2 return $flight->cancelled;

3 });

Of course, you may also simply loop over the collection like an array:

1 foreach ($flights as $flight) {

2 echo $flight->name;

3 }

Chunking Results

If you need to process thousands of Eloquent records, use the chunk command. The chunk method
will retrieve a “chunk” of Eloquent models, feeding them to a given Closure for processing. Using
the chunk method will conserve memory when working with large result sets:

1 Flight::chunk(200, function ($flights) {

2 foreach ($flights as $flight) {

3 //

4 }

Eloquent: Getting Started 493

5 });

The first argument passed to the method is the number of records you wish to receive per “chunk”.
The Closure passed as the second argument will be called for each chunk that is retrieved from the
database. A database query will be executed to retrieve each chunk of records passed to the Closure.

Using Cursors

The cursor method allows you to iterate through your database records using a cursor, which will
only execute a single query. When processing large amounts of data, the cursor method may be
used to greatly reduce your memory usage:

1 foreach (Flight::where('foo', 'bar')->cursor() as $flight) {

2 //

3 }

Retrieving Single Models / Aggregates

Of course, in addition to retrieving all of the records for a given table, you may also retrieve single
records using find and first. Instead of returning a collection of models, these methods return a
single model instance:

1 // Retrieve a model by its primary key...

2 $flight = App\Flight::find(1);

3

4 // Retrieve the first model matching the query constraints...

5 $flight = App\Flight::where('active', 1)->first();

You may also call the find method with an array of primary keys, which will return a collection of
the matching records:

1 $flights = App\Flight::find([1, 2, 3]);

Eloquent: Getting Started 494

Not Found Exceptions

Sometimes you may wish to throw an exception if a model is not found. This is particularly useful in
routes or controllers. The findOrFail and firstOrFail methods will retrieve the first result of the
query; however, if no result is found, a Illuminate\Database\Eloquent\ModelNotFoundException
will be thrown:

1 $model = App\Flight::findOrFail(1);

2

3 $model = App\Flight::where('legs', '>', 100)->firstOrFail();

If the exception is not caught, a 404 HTTP response is automatically sent back to the user. It is not
necessary to write explicit checks to return 404 responses when using these methods:

1 Route::get('/api/flights/{id}', function ($id) {

2 return App\Flight::findOrFail($id);

3 });

Retrieving Aggregates

You may also use the count, sum, max, and other aggregate methods provided by the query builder.
These methods return the appropriate scalar value instead of a full model instance:

1 $count = App\Flight::where('active', 1)->count();

2

3 $max = App\Flight::where('active', 1)->max('price');

Inserting & Updating Models

Inserts

To create a new record in the database, simply create a new model instance, set attributes on the
model, then call the save method:

Eloquent: Getting Started 495

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use App\Flight;

6 use Illuminate\Http\Request;

7 use App\Http\Controllers\Controller;

8

9 class FlightController extends Controller

10 {

11 /**

12 * Create a new flight instance.

13 *

14 * @param Request $request

15 * @return Response

16 */

17 public function store(Request $request)

18 {

19 // Validate the request...

20

21 $flight = new Flight;

22

23 $flight->name = $request->name;

24

25 $flight->save();

26 }

27 }

In this example, we simply assign the name parameter from the incoming HTTP request to the name
attribute of the App\Flightmodel instance. When we call the savemethod, a record will be inserted
into the database. The created_at and updated_at timestamps will automatically be set when the
save method is called, so there is no need to set them manually.

Updates

The save method may also be used to update models that already exist in the database. To update a
model, you should retrieve it, set any attributes you wish to update, and then call the save method.
Again, the updated_at timestamp will automatically be updated, so there is no need to manually
set its value:

Eloquent: Getting Started 496

1 $flight = App\Flight::find(1);

2

3 $flight->name = 'New Flight Name';

4

5 $flight->save();

Mass Updates

Updates can also be performed against any number of models that match a given query. In this
example, all flights that are active and have a destination of San Diegowill be marked as delayed:

1 App\Flight::where('active', 1)

2 ->where('destination', 'San Diego')

3 ->update(['delayed' => 1]);

The updatemethod expects an array of column and value pairs representing the columns that should
be updated.

{note} When issuing a mass update via Eloquent, the saved and updated model events
will not be fired for the updated models. This is because the models are never actually
retrieved when issuing a mass update.

Mass Assignment

Youmay also use the createmethod to save a newmodel in a single line. The insertedmodel instance
will be returned to you from the method. However, before doing so, you will need to specify either a
fillable or guarded attribute on the model, as all Eloquent models protect against mass-assignment
by default.

Amass-assignment vulnerability occurs when a user passes an unexpectedHTTP parameter through
a request, and that parameter changes a column in your database you did not expect. For example, a
malicious user might send an is_admin parameter through an HTTP request, which is then passed
into your model’s create method, allowing the user to escalate themselves to an administrator.

So, to get started, you should define which model attributes you want to make mass assignable. You
may do this using the $fillable property on the model. For example, let’s make the name attribute
of our Flight model mass assignable:

Eloquent: Getting Started 497

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The attributes that are mass assignable.

11 *

12 * @var array

13 */

14 protected $fillable = ['name'];

15 }

Once we have made the attributes mass assignable, we can use the create method to insert a new
record in the database. The create method returns the saved model instance:

1 $flight = App\Flight::create(['name' => 'Flight 10']);

Guarding Attributes

While $fillable serves as a “white list” of attributes that should be mass assignable, you may also
choose to use $guarded. The $guarded property should contain an array of attributes that you do
not want to be mass assignable. All other attributes not in the array will be mass assignable. So,
$guarded functions like a “black list”. Of course, you should use either $fillable or $guarded - not
both. In the example below, all attributes except for price will be mass assignable:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

Eloquent: Getting Started 498

10 * The attributes that aren't mass assignable.

11 *

12 * @var array

13 */

14 protected $guarded = ['price'];

15 }

If you would like to make all attributes mass assignable, you may define the $guarded property as
an empty array:

1 /**

2 * The attributes that aren't mass assignable.

3 *

4 * @var array

5 */

6 protected $guarded = [];

Other Creation Methods

firstOrCreate/ firstOrNew

There are two other methods you may use to create models by mass assigning attributes: firstOr-
Create and firstOrNew. The firstOrCreate method will attempt to locate a database record using
the given column / value pairs. If the model can not be found in the database, a record will be
inserted with the given attributes.

The firstOrNewmethod, like firstOrCreatewill attempt to locate a record in the databasematching
the given attributes. However, if a model is not found, a new model instance will be returned. Note
that the model returned by firstOrNew has not yet been persisted to the database. You will need to
call save manually to persist it:

1 // Retrieve the flight by the attributes, or create it if it doesn't exist...

2 $flight = App\Flight::firstOrCreate(['name' => 'Flight 10']);

3

4 // Retrieve the flight by the attributes, or instantiate a new instance...

5 $flight = App\Flight::firstOrNew(['name' => 'Flight 10']);

Eloquent: Getting Started 499

updateOrCreate

You may also come across situations where you want to update an existing model or create a new
model if none exists. Laravel provides an updateOrCreate method to do this in one step. Like the
firstOrCreate method, updateOrCreate persists the model, so there’s no need to call save():

1 // If there's a flight from Oakland to San Diego, set the price to $99.

2 // If no matching model exists, create one.

3 $flight = App\Flight::updateOrCreate(

4 ['departure' => 'Oakland', 'destination' => 'San Diego'],

5 ['price' => 99]

6);

Deleting Models

To delete a model, call the delete method on a model instance:

1 $flight = App\Flight::find(1);

2

3 $flight->delete();

Deleting An Existing Model By Key

In the example above, we are retrieving the model from the database before calling the delete

method. However, if you know the primary key of the model, you may delete the model without
retrieving it. To do so, call the destroy method:

1 App\Flight::destroy(1);

2

3 App\Flight::destroy([1, 2, 3]);

4

5 App\Flight::destroy(1, 2, 3);

Eloquent: Getting Started 500

Deleting Models By Query

Of course, you may also run a delete statement on a set of models. In this example, we will delete all
flights that are marked as inactive. Like mass updates, mass deletes will not fire any model events
for the models that are deleted:

1 $deletedRows = App\Flight::where('active', 0)->delete();

{note} When executing a mass delete statement via Eloquent, the deleting and deleted
model events will not be fired for the deleted models. This is because the models are
never actually retrieved when executing the delete statement.

Soft Deleting

In addition to actually removing records from your database, Eloquent can also “soft delete” models.
When models are soft deleted, they are not actually removed from your database. Instead, a
deleted_at attribute is set on the model and inserted into the database. If a model has a non-
null deleted_at value, the model has been soft deleted. To enable soft deletes for a model, use the
Illuminate\Database\Eloquent\SoftDeletes trait on the model and add the deleted_at column
to your $dates property:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6 use Illuminate\Database\Eloquent\SoftDeletes;

7

8 class Flight extends Model

9 {

10 use SoftDeletes;

11

12 /**

13 * The attributes that should be mutated to dates.

14 *

15 * @var array

16 */

17 protected $dates = ['deleted_at'];

18 }

Eloquent: Getting Started 501

Of course, you should add the deleted_at column to your database table. The Laravel schema
builder contains a helper method to create this column:

1 Schema::table('flights', function ($table) {

2 $table->softDeletes();

3 });

Now, when you call the delete method on the model, the deleted_at column will be set to the
current date and time. And, when querying a model that uses soft deletes, the soft deleted models
will automatically be excluded from all query results.

To determine if a given model instance has been soft deleted, use the trashed method:

1 if ($flight->trashed()) {

2 //

3 }

Querying Soft Deleted Models

Including Soft Deleted Models

As noted above, soft deleted models will automatically be excluded from query results. However,
you may force soft deleted models to appear in a result set using the withTrashed method on the
query:

1 $flights = App\Flight::withTrashed()

2 ->where('account_id', 1)

3 ->get();

The withTrashed method may also be used on a relationship query:

1 $flight->history()->withTrashed()->get();

Eloquent: Getting Started 502

Retrieving Only Soft Deleted Models

The onlyTrashed method will retrieve only soft deleted models:

1 $flights = App\Flight::onlyTrashed()

2 ->where('airline_id', 1)

3 ->get();

Restoring Soft Deleted Models

Sometimes you may wish to “un-delete” a soft deleted model. To restore a soft deleted model into
an active state, use the restore method on a model instance:

1 $flight->restore();

You may also use the restore method in a query to quickly restore multiple models. Again, like
other “mass” operations, this will not fire any model events for the models that are restored:

1 App\Flight::withTrashed()

2 ->where('airline_id', 1)

3 ->restore();

Like the withTrashed method, the restore method may also be used on relationships:

1 $flight->history()->restore();

Permanently Deleting Models

Sometimes you may need to truly remove a model from your database. To permanently remove a
soft deleted model from the database, use the forceDelete method:

Eloquent: Getting Started 503

1 // Force deleting a single model instance...

2 $flight->forceDelete();

3

4 // Force deleting all related models...

5 $flight->history()->forceDelete();

Query Scopes

Global Scopes

Global scopes allow you to add constraints to all queries for a given model. Laravel’s own soft delete
functionality utilizes global scopes to only pull “non-deleted” models from the database. Writing
your own global scopes can provide a convenient, easy way to make sure every query for a given
model receives certain constraints.

Writing Global Scopes

Writing a global scope is simple. Define a class that implements the Illuminate\Database\Eloquent\Scope
interface. This interface requires you to implement one method: apply. The applymethod may add
where constraints to the query as needed:

1 <?php

2

3 namespace App\Scopes;

4

5 use Illuminate\Database\Eloquent\Scope;

6 use Illuminate\Database\Eloquent\Model;

7 use Illuminate\Database\Eloquent\Builder;

8

9 class AgeScope implements Scope

10 {

11 /**

12 * Apply the scope to a given Eloquent query builder.

13 *

14 * @param \Illuminate\Database\Eloquent\Builder $builder

15 * @param \Illuminate\Database\Eloquent\Model $model

16 * @return void

17 */

18 public function apply(Builder $builder, Model $model)

Eloquent: Getting Started 504

19 {

20 $builder->where('age', '>', 200);

21 }

22 }

{tip} There is not a predefined folder for scopes in a default Laravel application, so feel
free to make your own Scopes folder within your Laravel application’s app directory.

Applying Global Scopes

To assign a global scope to a model, you should override a given model’s boot method and use the
addGlobalScope method:

1 <?php

2

3 namespace App;

4

5 use App\Scopes\AgeScope;

6 use Illuminate\Database\Eloquent\Model;

7

8 class User extends Model

9 {

10 /**

11 * The "booting" method of the model.

12 *

13 * @return void

14 */

15 protected static function boot()

16 {

17 parent::boot();

18

19 static::addGlobalScope(new AgeScope);

20 }

21 }

After adding the scope, a query to User::all() will produce the following SQL:

Eloquent: Getting Started 505

1 select * from `users` where `age` > 200

Anonymous Global Scopes

Eloquent also allows you to define global scopes using Closures, which is particularly useful for
simple scopes that do not warrant a separate class:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6 use Illuminate\Database\Eloquent\Builder;

7

8 class User extends Model

9 {

10 /**

11 * The "booting" method of the model.

12 *

13 * @return void

14 */

15 protected static function boot()

16 {

17 parent::boot();

18

19 static::addGlobalScope('age', function (Builder $builder) {

20 $builder->where('age', '>', 200);

21 });

22 }

23 }

The first argument of the addGlobalScope() serves as an identifier to remove the scope:

1 User::withoutGlobalScope('age')->get();

Eloquent: Getting Started 506

Removing Global Scopes

If you would like to remove a global scope for a given query, you may use the withoutGlobalScope
method. The method accepts the class name of the global scope as its only argument:

1 User::withoutGlobalScope(AgeScope::class)->get();

If you would like to remove several or even all of the global scopes, you may use the withoutGlob-
alScopes method:

1 // Remove all of the global scopes...

2 User::withoutGlobalScopes()->get();

3

4 // Remove some of the global scopes...

5 User::withoutGlobalScopes([

6 FirstScope::class, SecondScope::class

7])->get();

Local Scopes

Local scopes allow you to define common sets of constraints that you may easily re-use throughout
your application. For example, you may need to frequently retrieve all users that are considered
“popular”. To define a scope, simply prefix an Eloquent model method with scope.

Scopes should always return a query builder instance:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Scope a query to only include popular users.

11 *

12 * @param \Illuminate\Database\Eloquent\Builder $query

13 * @return \Illuminate\Database\Eloquent\Builder

Eloquent: Getting Started 507

14 */

15 public function scopePopular($query)

16 {

17 return $query->where('votes', '>', 100);

18 }

19

20 /**

21 * Scope a query to only include active users.

22 *

23 * @param \Illuminate\Database\Eloquent\Builder $query

24 * @return \Illuminate\Database\Eloquent\Builder

25 */

26 public function scopeActive($query)

27 {

28 return $query->where('active', 1);

29 }

30 }

Utilizing A Local Scope

Once the scope has been defined, you may call the scope methods when querying the model.
However, you do not need to include the scope prefix when calling the method. You can even chain
calls to various scopes, for example:

1 $users = App\User::popular()->active()->orderBy('created_at')->get();

Dynamic Scopes

Sometimes you may wish to define a scope that accepts parameters. To get started, just add your
additional parameters to your scope. Scope parameters should be defined after the $query parameter:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

Eloquent: Getting Started 508

8 {

9 /**

10 * Scope a query to only include users of a given type.

11 *

12 * @param \Illuminate\Database\Eloquent\Builder $query

13 * @param mixed $type

14 * @return \Illuminate\Database\Eloquent\Builder

15 */

16 public function scopeOfType($query, $type)

17 {

18 return $query->where('type', $type);

19 }

20 }

Now, you may pass the parameters when calling the scope:

1 $users = App\User::ofType('admin')->get();

Events

Eloquent models fire several events, allowing you to hook into various points in the model’s lifecycle
using the following methods: creating, created, updating, updated, saving, saved, deleting,
deleted, restoring, restored. Events allow you to easily execute code each time a specific model
class is saved or updated in the database.

Whenever a new model is saved for the first time, the creating and created events will fire. If a
model already existed in the database and the savemethod is called, the updating / updated events
will fire. However, in both cases, the saving / saved events will fire.

For example, let’s define an Eloquent event listener in a service provider. Within our event listener,
we will call the isValid method on the given model, and return false if the model is not valid.
Returning false from an Eloquent event listener will cancel the save / update operation:

1 <?php

2

3 namespace App\Providers;

4

5 use App\User;

Eloquent: Getting Started 509

6 use Illuminate\Support\ServiceProvider;

7

8 class AppServiceProvider extends ServiceProvider

9 {

10 /**

11 * Bootstrap any application services.

12 *

13 * @return void

14 */

15 public function boot()

16 {

17 User::creating(function ($user) {

18 return $user->isValid();

19 });

20 }

21

22 /**

23 * Register the service provider.

24 *

25 * @return void

26 */

27 public function register()

28 {

29 //

30 }

31 }

Observers

If you are listening for many events on a given model, you may use observers to group all of your
listeners into a single class. Observers classes have method names which reflect the Eloquent events
you wish to listen for. Each of these methods receives the model as their only argument. Laravel
does not include a default directory for observers, so you may create any directory you like to house
your observer classes:

1 <?php

2

3 namespace App\Observers;

4

5 use App\User;

6

Eloquent: Getting Started 510

7 class UserObserver

8 {

9 /**

10 * Listen to the User created event.

11 *

12 * @param User $user

13 * @return void

14 */

15 public function created(User $user)

16 {

17 //

18 }

19

20 /**

21 * Listen to the User deleting event.

22 *

23 * @param User $user

24 * @return void

25 */

26 public function deleting(User $user)

27 {

28 //

29 }

30 }

To register an observer, use the observemethod on the model you wish to observe. You may register
observers in the boot method of one of your service providers. In this example, we’ll register the
observer in the AppServiceProvider:

1 <?php

2

3 namespace App\Providers;

4

5 use App\User;

6 use App\Observers\UserObserver;

7 use Illuminate\Support\ServiceProvider;

8

9 class AppServiceProvider extends ServiceProvider

10 {

11 /**

12 * Bootstrap any application services.

13 *

Eloquent: Getting Started 511

14 * @return void

15 */

16 public function boot()

17 {

18 User::observe(UserObserver::class);

19 }

20

21 /**

22 * Register the service provider.

23 *

24 * @return void

25 */

26 public function register()

27 {

28 //

29 }

30 }

Eloquent: Relationships
• Introduction
• Defining Relationships A> - One To One A> - One To Many A> - One To Many (Inverse) A>
- Many To Many A> - Has Many Through A> - Polymorphic Relations A> - Many To Many
Polymorphic Relations

• Querying Relations A> - Relationship Methods Vs. Dynamic Properties A> - Querying
Relationship Existence A> - Querying Relationship Absence A> - Counting Related Models

• Eager Loading A> - Constraining Eager Loads A> - Lazy Eager Loading
• Inserting & Updating Related Models A> - The save Method A> - The create Method A> -
Belongs To Relationships A> - Many To Many Relationships

• Touching Parent Timestamps

Introduction

Database tables are often related to one another. For example, a blog post may havemany comments,
or an order could be related to the user who placed it. Eloquent makes managing and working with
these relationships easy, and supports several different types of relationships:

• One To One
• One To Many
• Many To Many
• Has Many Through
• Polymorphic Relations
• Many To Many Polymorphic Relations

Defining Relationships

Eloquent relationships are defined as functions on your Eloquent model classes. Since, like Eloquent
models themselves, relationships also serve as powerful query builders, defining relationships as
functions provides powerful method chaining and querying capabilities. For example, we may chain
additional constraints on this posts relationship:

Eloquent: Relationships 513

1 $user->posts()->where('active', 1)->get();

But, before diving too deep into using relationships, let’s learn how to define each type.

One To One

A one-to-one relationship is a very basic relation. For example, a User model might be associated
with one Phone. To define this relationship, we place a phonemethod on the Usermodel. The phone
method should call the hasOne method and return its result:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get the phone record associated with the user.

11 */

12 public function phone()

13 {

14 return $this->hasOne('App\Phone');

15 }

16 }

The first argument passed to the hasOne method is the name of the related model. Once the
relationship is defined, we may retrieve the related record using Eloquent’s dynamic properties.
Dynamic properties allow you to access relationship functions as if they were properties defined on
the model:

1 $phone = User::find(1)->phone;

Eloquent determines the foreign key of the relationship based on the model name. In this case, the
Phone model is automatically assumed to have a user_id foreign key. If you wish to override this
convention, you may pass a second argument to the hasOne method:

Eloquent: Relationships 514

1 return $this->hasOne('App\Phone', 'foreign_key');

Additionally, Eloquent assumes that the foreign key should have a value matching the id (or the
custom $primaryKey) column of the parent. In other words, Eloquent will look for the value of the
user’s id column in the user_id column of the Phone record. If you would like the relationship to
use a value other than id, you may pass a third argument to the hasOne method specifying your
custom key:

1 return $this->hasOne('App\Phone', 'foreign_key', 'local_key');

Defining The Inverse Of The Relationship

So, we can access the Phone model from our User. Now, let’s define a relationship on the Phone

model that will let us access the User that owns the phone. We can define the inverse of a hasOne

relationship using the belongsTo method:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Phone extends Model

8 {

9 /**

10 * Get the user that owns the phone.

11 */

12 public function user()

13 {

14 return $this->belongsTo('App\User');

15 }

16 }

In the example above, Eloquent will try to match the user_id from the Phone model to an id on
the User model. Eloquent determines the default foreign key name by examining the name of the
relationship method and suffixing the method name with _id. However, if the foreign key on the

Eloquent: Relationships 515

Phone model is not user_id, you may pass a custom key name as the second argument to the
belongsTo method:

1 /**

2 * Get the user that owns the phone.

3 */

4 public function user()

5 {

6 return $this->belongsTo('App\User', 'foreign_key');

7 }

If your parent model does not use id as its primary key, or you wish to join the child model to a
different column, you may pass a third argument to the belongsTo method specifying your parent
table’s custom key:

1 /**

2 * Get the user that owns the phone.

3 */

4 public function user()

5 {

6 return $this->belongsTo('App\User', 'foreign_key', 'other_key');

7 }

One To Many

A “one-to-many” relationship is used to define relationships where a single model owns any amount
of other models. For example, a blog post may have an infinite number of comments. Like all
other Eloquent relationships, one-to-many relationships are defined by placing a function on your
Eloquent model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Post extends Model

8 {

Eloquent: Relationships 516

9 /**

10 * Get the comments for the blog post.

11 */

12 public function comments()

13 {

14 return $this->hasMany('App\Comment');

15 }

16 }

Remember, Eloquent will automatically determine the proper foreign key column on the Comment

model. By convention, Eloquent will take the “snake case” name of the owning model and suffix
it with _id. So, for this example, Eloquent will assume the foreign key on the Comment model is
post_id.

Once the relationship has been defined, we can access the collection of comments by accessing
the comments property. Remember, since Eloquent provides “dynamic properties”, we can access
relationship functions as if they were defined as properties on the model:

1 $comments = App\Post::find(1)->comments;

2

3 foreach ($comments as $comment) {

4 //

5 }

Of course, since all relationships also serve as query builders, you can add further constraints to
which comments are retrieved by calling the comments method and continuing to chain conditions
onto the query:

1 $comments = App\Post::find(1)->comments()->where('title', 'foo')->first();

Like the hasOne method, you may also override the foreign and local keys by passing additional
arguments to the hasMany method:

1 return $this->hasMany('App\Comment', 'foreign_key');

2

3 return $this->hasMany('App\Comment', 'foreign_key', 'local_key');

Eloquent: Relationships 517

One To Many (Inverse)

Now that we can access all of a post’s comments, let’s define a relationship to allow a comment to
access its parent post. To define the inverse of a hasMany relationship, define a relationship function
on the child model which calls the belongsTo method:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Comment extends Model

8 {

9 /**

10 * Get the post that owns the comment.

11 */

12 public function post()

13 {

14 return $this->belongsTo('App\Post');

15 }

16 }

Once the relationship has been defined, we can retrieve the Post model for a Comment by accessing
the post “dynamic property”:

1 $comment = App\Comment::find(1);

2

3 echo $comment->post->title;

In the example above, Eloquent will try to match the post_id from the Comment model to an id on
the Post model. Eloquent determines the default foreign key name by examining the name of the
relationship method and suffixing the method name with _id. However, if the foreign key on the
Comment model is not post_id, you may pass a custom key name as the second argument to the
belongsTo method:

1 /**

2 * Get the post that owns the comment.

3 */

Eloquent: Relationships 518

4 public function post()

5 {

6 return $this->belongsTo('App\Post', 'foreign_key');

7 }

If your parent model does not use id as its primary key, or you wish to join the child model to a
different column, you may pass a third argument to the belongsTo method specifying your parent
table’s custom key:

1 /**

2 * Get the post that owns the comment.

3 */

4 public function post()

5 {

6 return $this->belongsTo('App\Post', 'foreign_key', 'other_key');

7 }

Many To Many

Many-to-many relations are slightly more complicated than hasOne and hasMany relationships. An
example of such a relationship is a user with many roles, where the roles are also shared by other
users. For example, many users may have the role of “Admin”. To define this relationship, three
database tables are needed: users, roles, and role_user. The role_user table is derived from the
alphabetical order of the related model names, and contains the user_id and role_id columns.

Many-to-many relationships are defined by writing a method that returns the result of the
belongsToMany method. For example, let’s define the roles method on our User model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The roles that belong to the user.

Eloquent: Relationships 519

11 */

12 public function roles()

13 {

14 return $this->belongsToMany('App\Role');

15 }

16 }

Once the relationship is defined, you may access the user’s roles using the roles dynamic property:

1 $user = App\User::find(1);

2

3 foreach ($user->roles as $role) {

4 //

5 }

Of course, like all other relationship types, you may call the roles method to continue chaining
query constraints onto the relationship:

1 $roles = App\User::find(1)->roles()->orderBy('name')->get();

As mentioned previously, to determine the table name of the relationship’s joining table, Eloquent
will join the two related model names in alphabetical order. However, you are free to override this
convention. You may do so by passing a second argument to the belongsToMany method:

1 return $this->belongsToMany('App\Role', 'role_user');

In addition to customizing the name of the joining table, you may also customize the column names
of the keys on the table by passing additional arguments to the belongsToMany method. The third
argument is the foreign key name of the model on which you are defining the relationship, while
the fourth argument is the foreign key name of the model that you are joining to:

1 return $this->belongsToMany('App\Role', 'role_user', 'user_id', 'role_id');

Eloquent: Relationships 520

Defining The Inverse Of The Relationship

To define the inverse of a many-to-many relationship, you simply place another call to belongsToM-
any on your related model. To continue our user roles example, let’s define the usersmethod on the
Role model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Role extends Model

8 {

9 /**

10 * The users that belong to the role.

11 */

12 public function users()

13 {

14 return $this->belongsToMany('App\User');

15 }

16 }

As you can see, the relationship is defined exactly the same as its User counterpart, with the
exception of simply referencing the App\User model. Since we’re reusing the belongsToMany

method, all of the usual table and key customization options are available when defining the inverse
of many-to-many relationships.

Retrieving Intermediate Table Columns

As you have already learned, working with many-to-many relations requires the presence of an
intermediate table. Eloquent provides some very helpful ways of interacting with this table. For
example, let’s assume our User object has many Role objects that it is related to. After accessing
this relationship, we may access the intermediate table using the pivot attribute on the models:

1 $user = App\User::find(1);

2

3 foreach ($user->roles as $role) {

4 echo $role->pivot->created_at;

5 }

Eloquent: Relationships 521

Notice that each Role model we retrieve is automatically assigned a pivot attribute. This attribute
contains a model representing the intermediate table, and may be used like any other Eloquent
model.

By default, only the model keys will be present on the pivot object. If your pivot table contains extra
attributes, you must specify them when defining the relationship:

1 return $this->belongsToMany('App\Role')->withPivot('column1', 'column2');

If you want your pivot table to have automatically maintained created_at and updated_at

timestamps, use the withTimestamps method on the relationship definition:

1 return $this->belongsToMany('App\Role')->withTimestamps();

Filtering Relationships Via Intermediate Table Columns

You can also filter the results returned by belongsToMany using the wherePivot and wherePivotIn

methods when defining the relationship:

1 return $this->belongsToMany('App\Role')->wherePivot('approved', 1);

2

3 return $this->belongsToMany('App\Role')->wherePivotIn('priority', [1, 2]);

Has Many Through

The “has-many-through” relationship provides a convenient short-cut for accessing distant relations
via an intermediate relation. For example, a Country model might have many Post models through
an intermediate User model. In this example, you could easily gather all blog posts for a given
country. Let’s look at the tables required to define this relationship:

1 countries

2 id - integer

3 name - string

4

5 users

Eloquent: Relationships 522

6 id - integer

7 country_id - integer

8 name - string

9

10 posts

11 id - integer

12 user_id - integer

13 title - string

Though posts does not contain a country_id column, the hasManyThrough relation provides access
to a country’s posts via $country->posts. To perform this query, Eloquent inspects the country_id
on the intermediate users table. After finding the matching user IDs, they are used to query the
posts table.

Now that we have examined the table structure for the relationship, let’s define it on the Country
model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Country extends Model

8 {

9 /**

10 * Get all of the posts for the country.

11 */

12 public function posts()

13 {

14 return $this->hasManyThrough('App\Post', 'App\User');

15 }

16 }

The first argument passed to the hasManyThroughmethod is the name of the final model we wish to
access, while the second argument is the name of the intermediate model.

Typical Eloquent foreign key conventions will be used when performing the relationship’s queries. If
you would like to customize the keys of the relationship, you may pass them as the third and fourth
arguments to the hasManyThrough method. The third argument is the name of the foreign key on
the intermediate model, the fourth argument is the name of the foreign key on the final model, and

Eloquent: Relationships 523

the fifth argument is the local key:

1 class Country extends Model

2 {

3 public function posts()

4 {

5 return $this->hasManyThrough(

6 'App\Post', 'App\User',

7 'country_id', 'user_id', 'id'

8);

9 }

10 }

Polymorphic Relations

Table Structure

Polymorphic relations allow a model to belong to more than one other model on a single association.
For example, imagine users of your application can “comment” both posts and videos. Using
polymorphic relationships, you can use a single comments table for both of these scenarios. First,
let’s examine the table structure required to build this relationship:

1 posts

2 id - integer

3 title - string

4 body - text

5

6 videos

7 id - integer

8 title - string

9 url - string

10

11 comments

12 id - integer

13 body - text

14 commentable_id - integer

15 commentable_type - string

Two important columns to note are the commentable_id and commentable_type columns on the
comments table. The commentable_id columnwill contain the ID value of the post or video, while the

Eloquent: Relationships 524

commentable_type columnwill contain the class name of the owning model. The commentable_type
column is how the ORM determines which “type” of owning model to return when accessing the
commentable relation.

Model Structure

Next, let’s examine the model definitions needed to build this relationship:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Comment extends Model

8 {

9 /**

10 * Get all of the owning commentable models.

11 */

12 public function commentable()

13 {

14 return $this->morphTo();

15 }

16 }

17

18 class Post extends Model

19 {

20 /**

21 * Get all of the post's comments.

22 */

23 public function comments()

24 {

25 return $this->morphMany('App\Comment', 'commentable');

26 }

27 }

28

29 class Video extends Model

30 {

31 /**

32 * Get all of the video's comments.

33 */

34 public function comments()

35 {

36 return $this->morphMany('App\Comment', 'commentable');

Eloquent: Relationships 525

37 }

38 }

Retrieving Polymorphic Relations

Once your database table and models are defined, you may access the relationships via your models.
For example, to access all of the comments for a post, we can simply use the comments dynamic
property:

1 $post = App\Post::find(1);

2

3 foreach ($post->comments as $comment) {

4 //

5 }

Youmay also retrieve the owner of a polymorphic relation from the polymorphic model by accessing
the name of themethod that performs the call to morphTo. In our case, that is the commentablemethod
on the Comment model. So, we will access that method as a dynamic property:

1 $comment = App\Comment::find(1);

2

3 $commentable = $comment->commentable;

The commentable relation on the Comment model will return either a Post or Video instance,
depending on which type of model owns the comment.

Custom Polymorphic Types

By default, Laravel will use the fully qualified class name to store the type of the related model. For
instance, given the example above where a Comment may belong to a Post or a Video, the default
commentable_type would be either App\Post or App\Video, respectively. However, you may wish
to decouple your database from your application’s internal structure. In that case, you may define a
relationship “morph map” to instruct Eloquent to use a custom name for each model instead of the
class name:

Eloquent: Relationships 526

1 use Illuminate\Database\Eloquent\Relations\Relation;

2

3 Relation::morphMap([

4 'posts' => App\Post::class,

5 'videos' => App\Video::class,

6]);

Youmay register the morphMap in the boot function of your AppServiceProvider or create a separate
service provider if you wish.

Many To Many Polymorphic Relations

Table Structure

In addition to traditional polymorphic relations, you may also define “many-to-many” polymorphic
relations. For example, a blog Post and Video model could share a polymorphic relation to a Tag

model. Using a many-to-many polymorphic relation allows you to have a single list of unique tags
that are shared across blog posts and videos. First, let’s examine the table structure:

1 posts

2 id - integer

3 name - string

4

5 videos

6 id - integer

7 name - string

8

9 tags

10 id - integer

11 name - string

12

13 taggables

14 tag_id - integer

15 taggable_id - integer

16 taggable_type - string

Eloquent: Relationships 527

Model Structure

Next, we’re ready to define the relationships on the model. The Post and Video models will both
have a tags method that calls the morphToMany method on the base Eloquent class:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Post extends Model

8 {

9 /**

10 * Get all of the tags for the post.

11 */

12 public function tags()

13 {

14 return $this->morphToMany('App\Tag', 'taggable');

15 }

16 }

Defining The Inverse Of The Relationship

Next, on the Tag model, you should define a method for each of its related models. So, for this
example, we will define a posts method and a videos method:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Tag extends Model

8 {

9 /**

10 * Get all of the posts that are assigned this tag.

11 */

12 public function posts()

13 {

14 return $this->morphedByMany('App\Post', 'taggable');

Eloquent: Relationships 528

15 }

16

17 /**

18 * Get all of the videos that are assigned this tag.

19 */

20 public function videos()

21 {

22 return $this->morphedByMany('App\Video', 'taggable');

23 }

24 }

Retrieving The Relationship

Once your database table and models are defined, you may access the relationships via your models.
For example, to access all of the tags for a post, you can simply use the tags dynamic property:

1 $post = App\Post::find(1);

2

3 foreach ($post->tags as $tag) {

4 //

5 }

Youmay also retrieve the owner of a polymorphic relation from the polymorphic model by accessing
the name of the method that performs the call to morphedByMany. In our case, that is the posts or
videos methods on the Tag model. So, you will access those methods as dynamic properties:

1 $tag = App\Tag::find(1);

2

3 foreach ($tag->videos as $video) {

4 //

5 }

Querying Relations

Since all types of Eloquent relationships are defined via functions, you may call those functions to
obtain an instance of the relationshipwithout actually executing the relationship queries. In addition,

Eloquent: Relationships 529

all types of Eloquent relationships also serve as query builders, allowing you to continue to chain
constraints onto the relationship query before finally executing the SQL against your database.

For example, imagine a blog system in which a User model has many associated Post models:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get all of the posts for the user.

11 */

12 public function posts()

13 {

14 return $this->hasMany('App\Post');

15 }

16 }

You may query the posts relationship and add additional constraints to the relationship like so:

1 $user = App\User::find(1);

2

3 $user->posts()->where('active', 1)->get();

You are able to use any of the query builder methods on the relationship, so be sure to explore the
query builder documentation to learn about all of the methods that are available to you.

Relationship Methods Vs. Dynamic Properties

If you do not need to add additional constraints to an Eloquent relationship query, you may simply
access the relationship as if it were a property. For example, continuing to use our User and Post

example models, we may access all of a user’s posts like so:

Eloquent: Relationships 530

1 $user = App\User::find(1);

2

3 foreach ($user->posts as $post) {

4 //

5 }

Dynamic properties are “lazy loading”, meaning they will only load their relationship data when you
actually access them. Because of this, developers often use eager loading to pre-load relationships
they know will be accessed after loading the model. Eager loading provides a significant reduction
in SQL queries that must be executed to load a model’s relations.

Querying Relationship Existence

When accessing the records for a model, you may wish to limit your results based on the existence
of a relationship. For example, imagine you want to retrieve all blog posts that have at least one
comment. To do so, you may pass the name of the relationship to the has method:

1 // Retrieve all posts that have at least one comment...

2 $posts = App\Post::has('comments')->get();

You may also specify an operator and count to further customize the query:

1 // Retrieve all posts that have three or more comments...

2 $posts = Post::has('comments', '>=', 3)->get();

Nested has statements may also be constructed using “dot” notation. For example, you may retrieve
all posts that have at least one comment and vote:

1 // Retrieve all posts that have at least one comment with votes...

2 $posts = Post::has('comments.votes')->get();

If you need even more power, you may use the whereHas and orWhereHas methods to put “where”
conditions on your has queries. These methods allow you to add customized constraints to a
relationship constraint, such as checking the content of a comment:

Eloquent: Relationships 531

1 // Retrieve all posts with at least one comment containing words like foo%

2 $posts = Post::whereHas('comments', function ($query) {

3 $query->where('content', 'like', 'foo%');

4 })->get();

Querying Relationship Absence

When accessing the records for a model, youmaywish to limit your results based on the absence of a
relationship. For example, imagine youwant to retrieve all blog posts that don’t have any comments.
To do so, you may pass the name of the relationship to the doesntHave method:

1 $posts = App\Post::doesntHave('comments')->get();

If you need even more power, you may use the whereDoesntHavemethod to put “where” conditions
on your doesntHave queries. This method allows you to add customized constraints to a relationship
constraint, such as checking the content of a comment:

1 $posts = Post::whereDoesntHave('comments', function ($query) {

2 $query->where('content', 'like', 'foo%');

3 })->get();

Counting Related Models

If you want to count the number of results from a relationship without actually loading them you
may use the withCount method, which will place a {relation}_count column on your resulting
models. For example:

1 $posts = App\Post::withCount('comments')->get();

2

3 foreach ($posts as $post) {

4 echo $post->comments_count;

5 }

Eloquent: Relationships 532

You may add retrieve the “counts” for multiple relations as well as add constraints to the queries:

1 $posts = Post::withCount(['votes', 'comments' => function ($query) {

2 $query->where('content', 'like', 'foo%');

3 }])->get();

4

5 echo $posts[0]->votes_count;

6 echo $posts[0]->comments_count;

Eager Loading

When accessing Eloquent relationships as properties, the relationship data is “lazy loaded”. This
means the relationship data is not actually loaded until you first access the property. However,
Eloquent can “eager load” relationships at the time you query the parent model. Eager loading
alleviates the N + 1 query problem. To illustrate the N + 1 query problem, consider a Book model
that is related to Author:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Book extends Model

8 {

9 /**

10 * Get the author that wrote the book.

11 */

12 public function author()

13 {

14 return $this->belongsTo('App\Author');

15 }

16 }

Now, let’s retrieve all books and their authors:

Eloquent: Relationships 533

1 $books = App\Book::all();

2

3 foreach ($books as $book) {

4 echo $book->author->name;

5 }

This loop will execute 1 query to retrieve all of the books on the table, then another query for each
book to retrieve the author. So, if we have 25 books, this loop would run 26 queries: 1 for the original
book, and 25 additional queries to retrieve the author of each book.

Thankfully, we can use eager loading to reduce this operation to just 2 queries. When querying, you
may specify which relationships should be eager loaded using the with method:

1 $books = App\Book::with('author')->get();

2

3 foreach ($books as $book) {

4 echo $book->author->name;

5 }

For this operation, only two queries will be executed:

1 select * from books

2

3 select * from authors where id in (1, 2, 3, 4, 5, ...)

Eager Loading Multiple Relationships

Sometimes you may need to eager load several different relationships in a single operation. To do
so, just pass additional arguments to the with method:

1 $books = App\Book::with('author', 'publisher')->get();

Eloquent: Relationships 534

Nested Eager Loading

To eager load nested relationships, you may use “dot” syntax. For example, let’s eager load all of the
book’s authors and all of the author’s personal contacts in one Eloquent statement:

1 $books = App\Book::with('author.contacts')->get();

Constraining Eager Loads

Sometimes you may wish to eager load a relationship, but also specify additional query constraints
for the eager loading query. Here’s an example:

1 $users = App\User::with(['posts' => function ($query) {

2 $query->where('title', 'like', '%first%');

3 }])->get();

In this example, Eloquent will only eager load posts where the post’s title column contains the
word first. Of course, you may call other query builder methods to further customize the eager
loading operation:

1 $users = App\User::with(['posts' => function ($query) {

2 $query->orderBy('created_at', 'desc');

3 }])->get();

Lazy Eager Loading

Sometimes you may need to eager load a relationship after the parent model has already been
retrieved. For example, this may be useful if you need to dynamically decide whether to load related
models:

1 $books = App\Book::all();

2

3 if ($someCondition) {

Eloquent: Relationships 535

4 $books->load('author', 'publisher');

5 }

If you need to set additional query constraints on the eager loading query, you may pass an array
keyed by the relationships you wish to load. The array values should be Closure instances which
receive the query instance:

1 $books->load(['author' => function ($query) {

2 $query->orderBy('published_date', 'asc');

3 }]);

Inserting & Updating Related Models

The Save Method

Eloquent provides convenientmethods for adding newmodels to relationships. For example, perhaps
you need to insert a new Comment for a Postmodel. Instead of manually setting the post_id attribute
on the Comment, you may insert the Comment directly from the relationship’s save method:

1 $comment = new App\Comment(['message' => 'A new comment.']);

2

3 $post = App\Post::find(1);

4

5 $post->comments()->save($comment);

Notice that we did not access the comments relationship as a dynamic property. Instead, we called
the comments method to obtain an instance of the relationship. The save method will automatically
add the appropriate post_id value to the new Comment model.

If you need to save multiple related models, you may use the saveMany method:

1 $post = App\Post::find(1);

2

3 $post->comments()->saveMany([

4 new App\Comment(['message' => 'A new comment.']),

Eloquent: Relationships 536

5 new App\Comment(['message' => 'Another comment.']),

6]);

The Create Method

In addition to the save and saveManymethods, you may also use the createmethod, which accepts
an array of attributes, creates a model, and inserts it into the database. Again, the difference between
save and create is that save accepts a full Eloquent model instance while create accepts a plain
PHP array:

1 $post = App\Post::find(1);

2

3 $comment = $post->comments()->create([

4 'message' => 'A new comment.',

5]);

Before using the createmethod, be sure to review the documentation on attribute mass assignment.

Belongs To Relationships

When updating a belongsTo relationship, you may use the associatemethod. This method will set
the foreign key on the child model:

1 $account = App\Account::find(10);

2

3 $user->account()->associate($account);

4

5 $user->save();

When removing a belongsTo relationship, you may use the dissociate method. This method will
set the relationship’s foreign key to null:

1 $user->account()->dissociate();

2

Eloquent: Relationships 537

3 $user->save();

Many To Many Relationships

Attaching / Detaching

Eloquent also provides a few additional helper methods to make working with related models more
convenient. For example, let’s imagine a user can have many roles and a role can have many users.
To attach a role to a user by inserting a record in the intermediate table that joins the models, use
the attach method:

1 $user = App\User::find(1);

2

3 $user->roles()->attach($roleId);

When attaching a relationship to a model, you may also pass an array of additional data to be
inserted into the intermediate table:

1 $user->roles()->attach($roleId, ['expires' => $expires]);

Of course, sometimes it may be necessary to remove a role from a user. To remove a many-to-many
relationship record, use the detachmethod. The detachmethod will remove the appropriate record
out of the intermediate table; however, both models will remain in the database:

1 // Detach a single role from the user...

2 $user->roles()->detach($roleId);

3

4 // Detach all roles from the user...

5 $user->roles()->detach();

For convenience, attach and detach also accept arrays of IDs as input:

Eloquent: Relationships 538

1 $user = App\User::find(1);

2

3 $user->roles()->detach([1, 2, 3]);

4

5 $user->roles()->attach([1 => ['expires' => $expires], 2, 3]);

Syncing Associations

You may also use the sync method to construct many-to-many associations. The sync method
accepts an array of IDs to place on the intermediate table. Any IDs that are not in the given array
will be removed from the intermediate table. So, after this operation is complete, only the IDs in the
given array will exist in the intermediate table:

1 $user->roles()->sync([1, 2, 3]);

You may also pass additional intermediate table values with the IDs:

1 $user->roles()->sync([1 => ['expires' => true], 2, 3]);

If you do not want to detach existing IDs, you may use the syncWithoutDetaching method:

1 $user->roles()->syncWithoutDetaching([1, 2, 3]);

Saving Additional Data On A Pivot Table

When working with a many-to-many relationship, the save method accepts an array of additional
intermediate table attributes as its second argument:

1 App\User::find(1)->roles()->save($role, ['expires' => $expires]);

Eloquent: Relationships 539

Updating A Record On A Pivot Table

If you need to update an existing row in your pivot table, you may use updateExistingPivot

method. This method accepts the pivot record foreign key and an array of attributes to update:

1 $user = App\User::find(1);

2

3 $user->roles()->updateExistingPivot($roleId, $attributes);

Touching Parent Timestamps

When a model belongsTo or belongsToMany another model, such as a Comment which belongs to a
Post, it is sometimes helpful to update the parent’s timestamp when the child model is updated. For
example, when a Commentmodel is updated, you may want to automatically “touch” the updated_at
timestamp of the owning Post. Eloquent makes it easy. Just add a touches property containing the
names of the relationships to the child model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Comment extends Model

8 {

9 /**

10 * All of the relationships to be touched.

11 *

12 * @var array

13 */

14 protected $touches = ['post'];

15

16 /**

17 * Get the post that the comment belongs to.

18 */

19 public function post()

20 {

21 return $this->belongsTo('App\Post');

Eloquent: Relationships 540

22 }

23 }

Now, when you update a Comment, the owning Post will have its updated_at column updated as
well, making it more convenient to know when to invalidate a cache of the Post model:

1 $comment = App\Comment::find(1);

2

3 $comment->text = 'Edit to this comment!';

4

5 $comment->save();

Eloquent: Collections
• Introduction
• Available Methods
• Custom Collections

Introduction

Allmulti-result sets returned by Eloquent are instances of the Illuminate\Database\Eloquent\Collection
object, including results retrieved via the get method or accessed via a relationship. The Eloquent
collection object extends the Laravel base collection, so it naturally inherits dozens of methods used
to fluently work with the underlying array of Eloquent models.

Of course, all collections also serve as iterators, allowing you to loop over them as if they were
simple PHP arrays:

1 $users = App\User::where('active', 1)->get();

2

3 foreach ($users as $user) {

4 echo $user->name;

5 }

However, collections are much more powerful than arrays and expose a variety of map / reduce
operations that may be chained using an intuitive interface. For example, let’s remove all inactive
models and gather the first name for each remaining user:

1 $users = App\User::where('active', 1)->get();

2

3 $names = $users->reject(function ($user) {

4 return $user->active === false;

5 })

6 ->map(function ($user) {

7 return $user->name;

8 });

Eloquent: Collections 542

{note} While most Eloquent collection methods return a new instance of an Eloquent
collection, the pluck, keys, zip, collapse, flatten and flip methods return a base
collection instance. Likewise, if a map operation returns a collection that does not contain
any Eloquent models, it will be automatically cast to a base collection.

Available Methods

The Base Collection

All Eloquent collections extend the base Laravel collection object; therefore, they inherit all of the
powerful methods provided by the base collection class:

<style> A> #collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> #collection-method-list a { A> display: block; A> }

</style>

<div id=”collection-method-list” markdown=”1”>

all avg chunk collapse combine contains count diff diffKeys each every except filter first flatMap
flatten flip forget forPage get groupBy has implode intersect isEmpty keyBy keys last map max
merge min only pluck pop prepend pull push put random reduce reject reverse search shift shuffle
slice sort sortBy sortByDesc splice sum take toArray toJson transform union unique values where
whereStrict whereIn whereInLoose zip

</div>

Custom Collections

If you need to use a custom Collection object with your own extension methods, you may override
the newCollection method on your model:

1 <?php

2

3 namespace App;

4

5 use App\CustomCollection;

6 use Illuminate\Database\Eloquent\Model;

7

8 class User extends Model

9 {

10 /**

11 * Create a new Eloquent Collection instance.

Eloquent: Collections 543

12 *

13 * @param array $models

14 * @return \Illuminate\Database\Eloquent\Collection

15 */

16 public function newCollection(array $models = [])

17 {

18 return new CustomCollection($models);

19 }

20 }

Once you have defined a newCollection method, you will receive an instance of your custom
collection anytime Eloquent returns a Collection instance of that model. If you would like to use
a custom collection for every model in your application, you should override the newCollection

method on a base model class that is extended by all of your models.

Eloquent: Mutators
• Introduction
• Accessors & Mutators A> - Defining An Accessor A> - Defining A Mutator
• Date Mutators
• Attribute Casting A> - Array & JSON Casting

Introduction

Accessors and mutators allow you to format Eloquent attribute values when you retrieve or set them
onmodel instances. For example, youmaywant to use the Laravel encrypter to encrypt a value while
it is stored in the database, and then automatically decrypt the attribute when you access it on an
Eloquent model.

In addition to custom accessors and mutators, Eloquent can also automatically cast date fields to
Carbon²⁴⁵ instances or even cast text fields to JSON.

Accessors & Mutators

Defining An Accessor

To define an accessor, create a getFooAttribute method on your model where Foo is the “studly”
cased name of the column you wish to access. In this example, we’ll define an accessor for the
first_name attribute. The accessor will automatically be called by Eloquent when attempting to
retrieve the value of the first_name attribute:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get the user's first name.

11 *

²⁴⁵https://github.com/briannesbitt/Carbon

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent: Mutators 545

12 * @param string $value

13 * @return string

14 */

15 public function getFirstNameAttribute($value)

16 {

17 return ucfirst($value);

18 }

19 }

As you can see, the original value of the column is passed to the accessor, allowing you to manipulate
and return the value. To access the value of the mutator, you may simply access the first_name

attribute on a model instance:

1 $user = App\User::find(1);

2

3 $firstName = $user->first_name;

Defining A Mutator

To define a mutator, define a setFooAttribute method on your model where Foo is the “studly”
cased name of the column you wish to access. So, again, let’s define a mutator for the first_-

name attribute. This mutator will be automatically called when we attempt to set the value of the
first_name attribute on the model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Set the user's first name.

11 *

12 * @param string $value

13 * @return void

14 */

Eloquent: Mutators 546

15 public function setFirstNameAttribute($value)

16 {

17 $this->attributes['first_name'] = strtolower($value);

18 }

19 }

The mutator will receive the value that is being set on the attribute, allowing you to manipulate the
value and set the manipulated value on the Eloquent model’s internal $attributes property. So, for
example, if we attempt to set the first_name attribute to Sally:

1 $user = App\User::find(1);

2

3 $user->first_name = 'Sally';

In this example, the setFirstNameAttribute function will be called with the value Sally. The
mutator will then apply the strtolower function to the name and set its resulting value in the
internal $attributes array.

Date Mutators

By default, Eloquent will convert the created_at and updated_at columns to instances of Carbon²⁴⁶,
which extends the PHP DateTime class to provide an assortment of helpful methods. You may
customize which dates are automatically mutated, and even completely disable this mutation, by
overriding the $dates property of your model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be mutated to dates.

11 *

²⁴⁶https://github.com/briannesbitt/Carbon

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent: Mutators 547

12 * @var array

13 */

14 protected $dates = [

15 'created_at',

16 'updated_at',

17 'deleted_at'

18];

19 }

When a column is considered a date, you may set its value to a UNIX timestamp, date string (Y-m-d),
date-time string, and of course a DateTime / Carbon instance, and the date’s value will automatically
be correctly stored in your database:

1 $user = App\User::find(1);

2

3 $user->deleted_at = Carbon::now();

4

5 $user->save();

As noted above, when retrieving attributes that are listed in your $dates property, they will
automatically be cast to Carbon²⁴⁷ instances, allowing you to use any of Carbon’s methods on your
attributes:

1 $user = App\User::find(1);

2

3 return $user->deleted_at->getTimestamp();

Date Formats

By default, timestamps are formatted as 'Y-m-d H:i:s'. If you need to customize the timestamp
format, set the $dateFormat property on your model. This property determines how date attributes
are stored in the database, as well as their format when the model is serialized to an array or JSON:

²⁴⁷https://github.com/briannesbitt/Carbon

https://github.com/briannesbitt/Carbon
https://github.com/briannesbitt/Carbon

Eloquent: Mutators 548

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class Flight extends Model

8 {

9 /**

10 * The storage format of the model's date columns.

11 *

12 * @var string

13 */

14 protected $dateFormat = 'U';

15 }

Attribute Casting

The $casts property on your model provides a convenient method of converting attributes to
common data types. The $casts property should be an array where the key is the name of the
attribute being cast and the value is the type youwish to cast the column to. The supported cast types
are: integer, real, float, double, string, boolean, object, array, collection, date, datetime, and
timestamp.

For example, let’s cast the is_admin attribute, which is stored in our database as an integer (0 or 1)
to a boolean value:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be casted to native types.

11 *

12 * @var array

13 */

Eloquent: Mutators 549

14 protected $casts = [

15 'is_admin' => 'boolean',

16];

17 }

Now the is_admin attribute will always be cast to a boolean when you access it, even if the
underlying value is stored in the database as an integer:

1 $user = App\User::find(1);

2

3 if ($user->is_admin) {

4 //

5 }

Array & JSON Casting

The array cast type is particularly useful when working with columns that are stored as serialized
JSON. For example, if your database has a JSON or TEXT field type that contains serialized JSON,
adding the array cast to that attribute will automatically deserialize the attribute to a PHP array
when you access it on your Eloquent model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be casted to native types.

11 *

12 * @var array

13 */

14 protected $casts = [

15 'options' => 'array',

Eloquent: Mutators 550

16];

17 }

Once the cast is defined, you may access the options attribute and it will automatically be
deserialized from JSON into a PHP array. When you set the value of the options attribute, the
given array will automatically be serialized back into JSON for storage:

1 $user = App\User::find(1);

2

3 $options = $user->options;

4

5 $options['key'] = 'value';

6

7 $user->options = $options;

8

9 $user->save();

Eloquent: Serialization
• Introduction
• Serializing Models & Collections A> - Serializing To Arrays A> - Serializing To JSON
• Hiding Attributes From JSON
• Appending Values To JSON

Introduction

When building JSON APIs, you will often need to convert your models and relationships to arrays
or JSON. Eloquent includes convenient methods for making these conversions, as well as controlling
which attributes are included in your serializations.

Serializing Models & Collections

Serializing To Arrays

To convert a model and its loaded relationships to an array, you should use the toArray method.
This method is recursive, so all attributes and all relations (including the relations of relations) will
be converted to arrays:

1 $user = App\User::with('roles')->first();

2

3 return $user->toArray();

You may also convert entire collections of models to arrays:

1 $users = App\User::all();

2

3 return $users->toArray();

Eloquent: Serialization 552

Serializing To JSON

To convert a model to JSON, you should use the toJson method. Like toArray, the toJson method
is recursive, so all attributes and relations will be converted to JSON:

1 $user = App\User::find(1);

2

3 return $user->toJson();

Alternatively, youmay cast amodel or collection to a string, whichwill automatically call the toJson
method on the model or collection:

1 $user = App\User::find(1);

2

3 return (string) $user;

Since models and collections are converted to JSON when cast to a string, you can return Eloquent
objects directly from your application’s routes or controllers:

1 Route::get('users', function () {

2 return App\User::all();

3 });

Hiding Attributes From JSON

Sometimes youmaywish to limit the attributes, such as passwords, that are included in yourmodel’s
array or JSON representation. To do so, add a $hidden property to your model:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

Eloquent: Serialization 553

8 {

9 /**

10 * The attributes that should be hidden for arrays.

11 *

12 * @var array

13 */

14 protected $hidden = ['password'];

15 }

{note} When hiding relationships, use the relationship’s method name, not its dynamic
property name.

Alternatively, you may use the visible property to define a white-list of attributes that should be
included in your model’s array and JSON representation. All other attributes will be hidden when
the model is converted to an array or JSON:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The attributes that should be visible in arrays.

11 *

12 * @var array

13 */

14 protected $visible = ['first_name', 'last_name'];

15 }

Temporarily Modifying Attribute Visibility

If you would like to make some typically hidden attributes visible on a given model instance,
you may use the makeVisible method. The makeVisible method returns the model instance for
convenient method chaining:

Eloquent: Serialization 554

1 return $user->makeVisible('attribute')->toArray();

Likewise, if you would like to make some typically visible attributes hidden on a given model
instance, you may use the makeHidden method.

1 return $user->makeHidden('attribute')->toArray();

Appending Values To JSON

Occasionally, when casting models to an array or JSON, you may wish to add attributes that do not
have a corresponding column in your database. To do so, first define an accessor for the value:

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * Get the administrator flag for the user.

11 *

12 * @return bool

13 */

14 public function getIsAdminAttribute()

15 {

16 return $this->attributes['admin'] == 'yes';

17 }

18 }

After creating the accessor, add the attribute name to the appends property on the model. Note that
attribute names are typically referenced in “snake case”, even though the accessor is defined using
“camel case”:

Eloquent: Serialization 555

1 <?php

2

3 namespace App;

4

5 use Illuminate\Database\Eloquent\Model;

6

7 class User extends Model

8 {

9 /**

10 * The accessors to append to the model's array form.

11 *

12 * @var array

13 */

14 protected $appends = ['is_admin'];

15 }

Once the attribute has been added to the appends list, it will be included in both the model’s array
and JSON representations. Attributes in the appends array will also respect the visible and hidden

settings configured on the model.

Console Commands
• Introduction
• Writing Commands A> - Generating Commands A> - Command Structure A> - Closure
Commands

• Defining Input Expectations A> - Arguments A> - Options A> - Input Arrays A> - Input
Descriptions

• Command I/O A> - Retrieving Input A> - Prompting For Input A> - Writing Output
• Registering Commands
• Programatically Executing Commands A> - Calling Commands From Other Commands

Introduction

Artisan is the command-line interface included with Laravel. It provides a number of helpful
commands that can assist you while you build your application. To view a list of all available Artisan
commands, you may use the list command:

1 php artisan list

Every command also includes a “help” screen which displays and describes the command’s available
arguments and options. To view a help screen, simply precede the name of the command with help:

1 php artisan help migrate

Writing Commands

In addition to the commands provided with Artisan, you may also build your own custom
commands. Commands are typically stored in the app/Console/Commands directory; however, you
are free to choose your own storage location as long as your commands can be loaded by Composer.

Console Commands 557

Generating Commands

To create a new command, use the make:command Artisan command. This command will create a
new command class in the app/Console/Commands directory. Don’t worry if this directory does not
exist in your application, since it will be created the first time you run the make:command Artisan
command. The generated command will include the default set of properties and methods that are
present on all commands:

1 php artisan make:command SendEmails

Next, you will need to register the command before it can be executed via the Artisan CLI.

Command Structure

After generating your command, you should fill in the signature and description properties of the
class, which will be used when displaying your command on the list screen. The handle method
will be called when your command is executed. You may place your command logic in this method.

{tip} For greater code reuse, it is good practice to keep your console commands light and
let them defer to application services to accomplish their tasks. In the example below,
note that we inject a service class to do the “heavy lifting” of sending the e-mails.

Let’s take a look at an example command. Note that we are able to inject any dependencies we
need into the command’s constructor. The Laravel service container will automatically inject all
dependencies type-hinted in the constructor:

1 <?php

2

3 namespace App\Console\Commands;

4

5 use App\User;

6 use App\DripEmailer;

7 use Illuminate\Console\Command;

8

9 class SendEmails extends Command

10 {

11 /**

12 * The name and signature of the console command.

13 *

14 * @var string

15 */

Console Commands 558

16 protected $signature = 'email:send {user}';

17

18 /**

19 * The console command description.

20 *

21 * @var string

22 */

23 protected $description = 'Send drip e-mails to a user';

24

25 /**

26 * The drip e-mail service.

27 *

28 * @var DripEmailer

29 */

30 protected $drip;

31

32 /**

33 * Create a new command instance.

34 *

35 * @param DripEmailer $drip

36 * @return void

37 */

38 public function __construct(DripEmailer $drip)

39 {

40 parent::__construct();

41

42 $this->drip = $drip;

43 }

44

45 /**

46 * Execute the console command.

47 *

48 * @return mixed

49 */

50 public function handle()

51 {

52 $this->drip->send(User::find($this->argument('user')));

53 }

54 }

Console Commands 559

Closure Commands

Closure based commands provide an alternative to defining console commands as classes. In the
same way that route Closures are an alternative to controllers, think of command Closures as an
alternative to command classes. Within the commandsmethod of your app/Console/Kernel.php file,
Laravel loads the routes/console.php file:

1 /**

2 * Register the Closure based commands for the application.

3 *

4 * @return void

5 */

6 protected function commands()

7 {

8 require base_path('routes/console.php');

9 }

Even though this file does not define HTTP routes, it defines console based entry points (routes)
into your application. Within this file, you may define all of your Closure based routes using the
Artisan::command method. The command method accepts two arguments: the command signature
and a Closure which receives the commands arguments and options:

1 Artisan::command('build {project}', function ($project) {

2 $this->info("Building {$project}!");

3 });

The Closure is bound to the underlying command instance, so you have full access to all of the
helper methods you would typically be able to access on a full command class.

Type-Hinting Dependencies

In addition to receiving your command’s arguments and options, command Closures may also type-
hint additional dependencies that you would like resolved out of the service container:

1 use App\User;

2 use App\DripEmailer;

3

4 Artisan::command('email:send {user}', function (DripEmailer $drip, $user) {

5 $drip->send(User::find($user));

Console Commands 560

6 });

Closure Command Descriptions

When defining a Closure based command, you may use the describe method to add a description
to the command. This description will be displayed when you run the php artisan list or php
artisan help commands:

1 Artisan::command('build {project}', function ($project) {

2 $this->info("Building {$project}!");

3 })->describe('Build the project');

Defining Input Expectations

When writing console commands, it is common to gather input from the user through arguments
or options. Laravel makes it very convenient to define the input you expect from the user using the
signature property on your commands. The signature property allows you to define the name,
arguments, and options for the command in a single, expressive, route-like syntax.

Arguments

All user supplied arguments and options are wrapped in curly braces. In the following example, the
command defines one required argument: user:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user}';

You may also make arguments optional and define default values for arguments:

Console Commands 561

1 // Optional argument...

2 email:send {user?}

3

4 // Optional argument with default value...

5 email:send {user=foo}

Options

Options, like arguments, are another form of user input. Options are prefixed by two hyphens (--)
when they are specified on the command line. There are two types of options: those that receive a
value and those that don’t. Options that don’t receive a value serve as a boolean “switch”. Let’s take
a look at an example of this type of option:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send {user} {--queue}';

In this example, the --queue switch may be specified when calling the Artisan command. If the
--queue switch is passed, the value of the option will be true. Otherwise, the value will be false:

1 php artisan email:send 1 --queue

Options With Values

Next, let’s take a look at an option that expects a value. If the user must specify a value for an option,
suffix the option name with a = sign:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

Console Commands 562

6 protected $signature = 'email:send {user} {--queue=}';

In this example, the user may pass a value for the option like so:

1 php artisan email:send 1 --queue=default

You may assign default values to options by specifying the default value after the option name. If
no option value is passed by the user, the default value will be used:

1 email:send {user} {--queue=default}

Option Shortcuts

To assign a shortcut when defining an option, you may specify it before the option name and use a
| delimiter to separate the shortcut from the full option name:

1 email:send {user} {--Q|queue}

Input Arrays

If you would like to define arguments or options to expect array inputs, you may use the * character.
First, let’s take a look at an example that specifies an array argument:

1 email:send {user*}

When calling this method, the user arguments may be passed in order to the command line. For
example, the following command will set the value of user to ['foo', 'bar']:

Console Commands 563

1 php artisan email:send foo bar

When defining an option that expects an array input, each option value passed to the command
should be prefixed with the option name:

1 email:send {user} {--id=*}

2

3 php artisan email:send --id=1 --id=2

Input Descriptions

You may assign descriptions to input arguments and options by separating the parameter from the
description using a colon. If you need a little extra room to define your command, feel free to spread
the definition across multiple lines:

1 /**

2 * The name and signature of the console command.

3 *

4 * @var string

5 */

6 protected $signature = 'email:send

7 {user : The ID of the user}

8 {--queue= : Whether the job should be queued}';

Command I/O

Retrieving Input

While your command is executing, you will obviously need to access the values for the arguments
and options accepted by your command. To do so, you may use the argument and option methods:

Console Commands 564

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $userId = $this->argument('user');

9

10 //

11 }

If you need to retrieve all of the arguments as an array, call the arguments method:

1 $arguments = $this->arguments();

Options may be retrieved just as easily as arguments using the optionmethod. To retrieve all of the
options as an array, call the options method:

1 // Retrieve a specific option...

2 $queueName = $this->option('queue');

3

4 // Retrieve all options...

5 $options = $this->options();

If the argument or option does not exist, null will be returned.

Prompting For Input

In addition to displaying output, you may also ask the user to provide input during the execution of
your command. The ask method will prompt the user with the given question, accept their input,
and then return the user’s input back to your command:

1 /**

2 * Execute the console command.

3 *

Console Commands 565

4 * @return mixed

5 */

6 public function handle()

7 {

8 $name = $this->ask('What is your name?');

9 }

The secret method is similar to ask, but the user’s input will not be visible to them as they type in
the console. This method is useful when asking for sensitive information such as a password:

1 $password = $this->secret('What is the password?');

Asking For Confirmation

If you need to ask the user for a simple confirmation, you may use the confirm method. By default,
this method will return false. However, if the user enters y or yes in response to the prompt, the
method will return true.

1 if ($this->confirm('Do you wish to continue?')) {

2 //

3 }

Auto-Completion

The anticipate method can be used to provide auto-completion for possible choices. The user can
still choose any answer, regardless of the auto-completion hints:

1 $name = $this->anticipate('What is your name?', ['Taylor', 'Dayle']);

Multiple Choice Questions

If you need to give the user a predefined set of choices, you may use the choice method. You may
set the default value to be returned if no option is chosen:

Console Commands 566

1 $name = $this->choice('What is your name?', ['Taylor', 'Dayle'], $default);

Writing Output

To send output to the console, use the line, info, comment, question and error methods. Each of
these methods will use appropriate ANSI colors for their purpose. For example, let’s display some
general information to the user. Typically, the infomethod will display in the console as green text:

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $this->info('Display this on the screen');

9 }

To display an error message, use the errormethod. Error message text is typically displayed in red:

1 $this->error('Something went wrong!');

If you would like to display plain, uncolored console output, use the line method:

1 $this->line('Display this on the screen');

Table Layouts

The table method makes it easy to correctly format multiple rows / columns of data. Just pass in
the headers and rows to the method. The width and height will be dynamically calculated based on
the given data:

Console Commands 567

1 $headers = ['Name', 'Email'];

2

3 $users = App\User::all(['name', 'email'])->toArray();

4

5 $this->table($headers, $users);

Progress Bars

For long running tasks, it could be helpful to show a progress indicator. Using the output object, we
can start, advance and stop the Progress Bar. First, define the total number of steps the process will
iterate through. Then, advance the Progress Bar after processing each item:

1 $users = App\User::all();

2

3 $bar = $this->output->createProgressBar(count($users));

4

5 foreach ($users as $user) {

6 $this->performTask($user);

7

8 $bar->advance();

9 }

10

11 $bar->finish();

For more advanced options, check out the Symfony Progress Bar component documentation²⁴⁸.

Registering Commands

Once your command is finished, you need to register it with Artisan. All commands are registered in
the app/Console/Kernel.php file. Within this file, you will find a list of commands in the commands
property. To register your command, simply add the command’s class name to the list. When
Artisan boots, all the commands listed in this property will be resolved by the service container
and registered with Artisan:

²⁴⁸https://symfony.com/doc/2.7/components/console/helpers/progressbar.html

https://symfony.com/doc/2.7/components/console/helpers/progressbar.html
https://symfony.com/doc/2.7/components/console/helpers/progressbar.html

Console Commands 568

1 protected $commands = [

2 Commands\SendEmails::class

3];

Programatically Executing Commands

Sometimes you may wish to execute an Artisan command outside of the CLI. For example, you
may wish to fire an Artisan command from a route or controller. You may use the call method on
the Artisan facade to accomplish this. The call method accepts the name of the command as the
first argument, and an array of command parameters as the second argument. The exit code will be
returned:

1 Route::get('/foo', function () {

2 $exitCode = Artisan::call('email:send', [

3 'user' => 1, '--queue' => 'default'

4]);

5

6 //

7 });

Using the queuemethod on the Artisan facade, you may even queue Artisan commands so they are
processed in the background by your queue workers. Before using this method, make sure you have
configured your queue and are running a queue listener:

1 Route::get('/foo', function () {

2 Artisan::queue('email:send', [

3 'user' => 1, '--queue' => 'default'

4]);

5

6 //

7 });

If you need to specify the value of an option that does not accept string values, such as the --force
flag on the migrate:refresh command, you may pass true or false:

Console Commands 569

1 $exitCode = Artisan::call('migrate:refresh', [

2 '--force' => true,

3]);

Calling Commands From Other Commands

Sometimes you may wish to call other commands from an existing Artisan command. You may do
so using the callmethod. This callmethod accepts the command name and an array of command
parameters:

1 /**

2 * Execute the console command.

3 *

4 * @return mixed

5 */

6 public function handle()

7 {

8 $this->call('email:send', [

9 'user' => 1, '--queue' => 'default'

10]);

11

12 //

13 }

If you would like to call another console command and suppress all of its output, you may use the
callSilent method. The callSilent method has the same signature as the call method:

1 $this->callSilent('email:send', [

2 'user' => 1, '--queue' => 'default'

3]);

Task Scheduling
• Introduction
• Defining Schedules A> - Schedule Frequency Options A> - Preventing Task Overlaps A> -
Maintenance Mode

• Task Output
• Task Hooks

Introduction

In the past, you may have generated a Cron entry for each task you needed to schedule on your
server. However, this can quickly become a pain, because your task schedule is no longer in source
control and you must SSH into your server to add additional Cron entries.

Laravel’s command scheduler allows you to fluently and expressively define your command
schedule within Laravel itself. When using the scheduler, only a single Cron entry is needed on
your server. Your task schedule is defined in the app/Console/Kernel.php file’s schedule method.
To help you get started, a simple example is defined within the method.

Starting The Scheduler

When using the scheduler, you only need to add the following Cron entry to your server. If you do
not know how to add Cron entries to your server, consider using a service such as Laravel Forge²⁴⁹
which can manage the Cron entries for you:

1 * * * * * php /path/to/artisan schedule:run >> /dev/null 2>&1

This Cronwill call the Laravel command scheduler everyminute.When the schedule:run command
is executed, Laravel will evaluate your scheduled tasks and runs the tasks that are due.

Defining Schedules

You may define all of your scheduled tasks in the schedule method of the App\Console\Kernel

class. To get started, let’s look at an example of scheduling a task. In this example, we will schedule
a Closure to be called every day at midnight. Within the Closure we will execute a database query
to clear a table:

²⁴⁹https://forge.laravel.com

https://forge.laravel.com/
https://forge.laravel.com/

Task Scheduling 571

1 <?php

2

3 namespace App\Console;

4

5 use DB;

6 use Illuminate\Console\Scheduling\Schedule;

7 use Illuminate\Foundation\Console\Kernel as ConsoleKernel;

8

9 class Kernel extends ConsoleKernel

10 {

11 /**

12 * The Artisan commands provided by your application.

13 *

14 * @var array

15 */

16 protected $commands = [

17 \App\Console\Commands\Inspire::class,

18];

19

20 /**

21 * Define the application's command schedule.

22 *

23 * @param \Illuminate\Console\Scheduling\Schedule $schedule

24 * @return void

25 */

26 protected function schedule(Schedule $schedule)

27 {

28 $schedule->call(function () {

29 DB::table('recent_users')->delete();

30 })->daily();

31 }

32 }

In addition to scheduling Closure calls, you may also schedule Artisan commands and operating
system commands. For example, you may use the commandmethod to schedule an Artisan command
using either the command’s name or class:

1 $schedule->command('emails:send --force')->daily();

2

3 $schedule->command(EmailsCommand::class, ['--force'])->daily();

Task Scheduling 572

The exec command may be used to issue a command to the operating system:

1 $schedule->exec('node /home/forge/script.js')->daily();

Schedule Frequency Options

Of course, there are a variety of schedules you may assign to your task:

Method | Description ————- | ————- ->cron('* * * * * *'); | Run the task on a custom Cron
schedule ->everyMinute(); | Run the task every minute ->everyFiveMinutes(); | Run the task ev-
ery fiveminutes ->everyTenMinutes(); | Run the task every tenminutes ->everyThirtyMinutes();
| Run the task every thirty minutes ->hourly(); | Run the task every hour ->daily(); | Run the task
every day at midnight ->dailyAt('13:00'); | Run the task every day at 13:00 ->twiceDaily(1,

13); | Run the task daily at 1:00 & 13:00 ->weekly(); | Run the task every week ->monthly();

| Run the task every month ->monthlyOn(4, '15:00'); | Run the task every month on the 4th
at 15:00 ->quarterly(); | Run the task every quarter ->yearly(); | Run the task every year -

>timezone('America/New_York'); | Set the timezone

These methods may be combined with additional constraints to create even more finely tuned
schedules that only run on certain days of the week. For example, to schedule a command to run
weekly on Monday:

1 // Run once per week on Monday at 1 PM...

2 $schedule->call(function () {

3 //

4 })->weekly()->mondays()->at('13:00');

5

6 // Run hourly from 8 AM to 5 PM on weekdays...

7 $schedule->command('foo')

8 ->weekdays()

9 ->hourly()

10 ->timezone('America/Chicago')

11 ->between('8:00', '17:00');

Below is a list of the additional schedule constraints:

Method | Description ————- | ————- ->weekdays(); | Limit the task to weekdays ->sundays();
| Limit the task to Sunday ->mondays(); | Limit the task to Monday ->tuesdays(); | Limit the
task to Tuesday ->wednesdays(); | Limit the task to Wednesday ->thursdays(); | Limit the task
to Thursday ->fridays(); | Limit the task to Friday ->saturdays(); | Limit the task to Saturday

Task Scheduling 573

->between($start, $end); | Limit the task to run between start and end times ->when(Closure);
| Limit the task based on a truth test

Between Time Constraints

The between method may be used to limit the execution of a task based on the time of day:

1 $schedule->command('reminders:send')

2 ->hourly()

3 ->between('7:00', '22:00');

Similarly, the unlessBetween method can be used to exclude the execution of a task for a period of
time:

1 $schedule->command('reminders:send')

2 ->hourly()

3 ->unlessBetween('23:00', '4:00');

Truth Test Constraints

The when method may be used to limit the execution of a task based on the result of a given truth
test. In other words, if the given Closure returns true, the task will execute as long as no other
constraining conditions prevent the task from running:

1 $schedule->command('emails:send')->daily()->when(function () {

2 return true;

3 });

The skipmethod may be seen as the inverse of when. If the skipmethod returns true, the scheduled
task will not be executed:

1 $schedule->command('emails:send')->daily()->skip(function () {

2 return true;

3 });

Task Scheduling 574

When using chained whenmethods, the scheduled command will only execute if all when conditions
return true.

Preventing Task Overlaps

By default, scheduled tasks will be run even if the previous instance of the task is still running. To
prevent this, you may use the withoutOverlapping method:

1 $schedule->command('emails:send')->withoutOverlapping();

In this example, the emails:send Artisan command will be run every minute if it is not already
running. The withoutOverlappingmethod is especially useful if you have tasks that vary drastically
in their execution time, preventing you from predicting exactly how long a given task will take.

Maintenance Mode

Laravel’s scheduled tasks will not run when Laravel is in maintenance mode, since we don’t want
your tasks to interfere with any unfinished maintenance you may be performing on your server.
However, if you would like to force a task to run even in maintenance mode, you may use the
evenInMaintenanceMode method:

1 $schedule->command('emails:send')->evenInMaintenanceMode();

Task Output

The Laravel scheduler provides several convenient methods for working with the output generated
by scheduled tasks. First, using the sendOutputTomethod, you may send the output to a file for later
inspection:

1 $schedule->command('emails:send')

2 ->daily()

3 ->sendOutputTo($filePath);

If you would like to append the output to a given file, you may use the appendOutputTo method:

Task Scheduling 575

1 $schedule->command('emails:send')

2 ->daily()

3 ->appendOutputTo($filePath);

Using the emailOutputTo method, you may e-mail the output to an e-mail address of your choice.
Note that the output must first be sent to a file using the sendOutputTo method. Before e-mailing
the output of a task, you should configure Laravel’s e-mail services:

1 $schedule->command('foo')

2 ->daily()

3 ->sendOutputTo($filePath)

4 ->emailOutputTo('foo@example.com');

{note} The emailOutputTo, sendOutputTo and appendOutputTo methods are exclusive
to the command method and are not supported for call.

Task Hooks

Using the before and after methods, you may specify code to be executed before and after the
scheduled task is complete:

1 $schedule->command('emails:send')

2 ->daily()

3 ->before(function () {

4 // Task is about to start...

5 })

6 ->after(function () {

7 // Task is complete...

8 });

Pinging URLs

Using the pingBefore and thenPing methods, the scheduler can automatically ping a given URL
before or after a task is complete. This method is useful for notifying an external service, such as

Task Scheduling 576

Laravel Envoyer²⁵⁰, that your scheduled task is commencing or has finished execution:

1 $schedule->command('emails:send')

2 ->daily()

3 ->pingBefore($url)

4 ->thenPing($url);

Using either the pingBefore($url) or thenPing($url) feature requires the Guzzle HTTP library.
You can add Guzzle to your project using the Composer package manager:

1 composer require guzzlehttp/guzzle

²⁵⁰https://envoyer.io

https://envoyer.io/
https://envoyer.io/

Testing
• Introduction
• Environment
• Creating & Running Tests

Introduction

Laravel is built with testing in mind. In fact, support for testing with PHPUnit is included out of
the box and a phpunit.xml file is already setup for your application. The framework also ships with
convenient helper methods that allow you to expressively test your applications.

An ExampleTest.php file is provided in the tests directory. After installing a new Laravel
application, simply run phpunit on the command line to run your tests.

Environment

When running tests, Laravel will automatically set the configuration environment to testing.
Laravel automatically configures the session and cache to the array driver while testing, meaning
no session or cache data will be persisted while testing.

You are free to define other testing environment configuration values as necessary. The testing

environment variables may be configured in the phpunit.xml file, but make sure to clear your
configuration cache using the config:clear Artisan command before running your tests!

Creating & Running Tests

To create a new test case, use the make:test Artisan command:

1 php artisan make:test UserTest

This command will place a new UserTest class within your tests directory. You may then define
test methods as you normally would using PHPUnit. To run your tests, simply execute the phpunit
command from your terminal:

Testing 578

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class UserTest extends TestCase

8 {

9 /**

10 * A basic test example.

11 *

12 * @return void

13 */

14 public function testExample()

15 {

16 $this->assertTrue(true);

17 }

18 }

{note} If you define your own setUp method within a test class, be sure to call
parent::setUp.

Application Testing
• Introduction
• Interacting With Your Application A> - Interacting With Links A> - Interacting With Forms
• Testing JSON APIs A> - Verifying Exact Match A> - Verifying Structural Match
• Sessions / Authentication
• Disabling Middleware
• Custom HTTP Requests
• PHPUnit Assertions

Introduction

Laravel provides a very fluent API for making HTTP requests to your application, examining the
output, and even filling out forms. For example, take a look at the test defined below:

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseTransactions;

5

6 class ExampleTest extends TestCase

7 {

8 /**

9 * A basic functional test example.

10 *

11 * @return void

12 */

13 public function testBasicExample()

14 {

15 $this->visit('/')

16 ->see('Laravel 5')

17 ->dontSee('Rails');

18 }

19 }

The visitmethod makes a GET request into the application. The seemethod asserts that we should
see the given text in the response returned by the application. The dontSee method asserts that the

Application Testing 580

given text is not returned in the application response. This is the most basic application test available
in Laravel.

You may also use the ‘visitRoute’ method to make a ‘GET’ request via a named route:

1 $this->visitRoute('profile');

2

3 $this->visitRoute('profile', ['user' => 1]);

Interacting With Your Application

Of course, you can do much more than simply assert that text appears in a given response. Let’s take
a look at some examples of clicking links and filling out forms:

Interacting With Links

In this test, we will make a request to the application, “click” a link in the returned response, and
then assert that we landed on a given URI. For example, let’s assume there is a link in our response
that has a text value of “About Us”:

1 About Us

Now, let’s write a test that clicks the link and asserts the user lands on the correct page:

1 public function testBasicExample()

2 {

3 $this->visit('/')

4 ->click('About Us')

5 ->seePageIs('/about-us');

6 }

You may also check that the user has arrived at the correct named route using the seeRouteIs

method:

Application Testing 581

1 ->seeRouteIs('profile', ['user' => 1]);

Interacting With Forms

Laravel also provides several methods for testing forms. The type, select, check, attach, and press
methods allow you to interact with all of your form’s inputs. For example, let’s imagine this form
exists on the application’s registration page:

1 <form action="/register" method="POST">

2 {{ csrf_field() }}

3

4 <div>

5 Name: <input type="text" name="name">

6 </div>

7

8 <div>

9 <input type="checkbox" value="yes" name="terms"> Accept Terms

10 </div>

11

12 <div>

13 <input type="submit" value="Register">

14 </div>

15 </form>

We can write a test to complete this form and inspect the result:

1 public function testNewUserRegistration()

2 {

3 $this->visit('/register')

4 ->type('Taylor', 'name')

5 ->check('terms')

6 ->press('Register')

7 ->seePageIs('/dashboard');

8 }

Of course, if your form contains other inputs such as radio buttons or drop-down boxes, you may
easily fill out those types of fields as well. Here is a list of each form manipulation method:

Application Testing 582

Method | Description ————- | ————- $this->type($text, $elementName) | “Type” text into
a given field. $this->select($value, $elementName) | “Select” a radio button or drop-down
field. $this->check($elementName) | “Check” a checkbox field. $this->uncheck($elementName)
| “Uncheck” a checkbox field. $this->attach($pathToFile, $elementName) | “Attach” a file to the
form. $this->press($buttonTextOrElementName) | “Press” a button with the given text or name.

File Inputs

If your form contains file inputs, you may attach files to the form using the attach method:

1 public function testPhotoCanBeUploaded()

2 {

3 $this->visit('/upload')

4 ->attach($pathToFile, 'photo')

5 ->press('Upload')

6 ->see('Upload Successful!');

7 }

Testing JSON APIs

Laravel also provides several helpers for testing JSON APIs and their responses. For example, the
json, get, post, put, patch, and delete methods may be used to issue requests with various HTTP
verbs. You may also easily pass data and headers to these methods. To get started, let’s write a test
to make a POST request to /user and assert that the expected data was returned:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->json('POST', '/user', ['name' => 'Sally'])

13 ->seeJson([

14 'created' => true,

15]);

Application Testing 583

16 }

17 }

{tip} The seeJson method converts the given array into JSON, and then verifies that
the JSON fragment occurs anywhere within the entire JSON response returned by the
application. So, if there are other properties in the JSON response, this test will still pass
as long as the given fragment is present.

Verifying Exact Match

If you would like to verify that the given array is an exact match for the JSON returned by the
application, you should use the seeJsonEquals method:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->json('POST', '/user', ['name' => 'Sally'])

13 ->seeJsonEquals([

14 'created' => true,

15]);

16 }

17 }

Verifying Structural Match

It is also possible to verify that a JSON response adheres to a specific structure. In this scenario, you
should use the seeJsonStructure method and pass it your expected JSON structure:

Application Testing 584

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->get('/user/1')

13 ->seeJsonStructure([

14 'name',

15 'pet' => [

16 'name', 'age'

17]

18]);

19 }

20 }

The above example illustrates an expectation of receiving a name attribute and a nested pet object
with its own name and age attributes. seeJsonStructure will not fail if additional keys are present
in the response. For example, the test would still pass if the pet had a weight attribute.

You may use the * to assert that the returned JSON structure has a list where each list item contains
at least the attributes found in the set of values:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 // Assert that each user in the list has at least an id, name and email \

13 attribute.

14 $this->get('/users')

Application Testing 585

15 ->seeJsonStructure([

16 '*' => [

17 'id', 'name', 'email'

18]

19]);

20 }

21 }

You may also nest the * notation. In this case, we will assert that each user in the JSON response
contains a given set of attributes and that each pet on each user also contains a given set of attributes:

1 $this->get('/users')

2 ->seeJsonStructure([

3 '*' => [

4 'id', 'name', 'email', 'pets' => [

5 '*' => [

6 'name', 'age'

7]

8]

9]

10]);

Sessions / Authentication

Laravel provides several helpers for working with the session during testing. First, you may set the
session data to a given array using the withSession method. This is useful for loading the session
with data before issuing a request to your application:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testApplication()

6 {

7 $this->withSession(['foo' => 'bar'])

8 ->visit('/');

Application Testing 586

9 }

10 }

Of course, one common use of the session is for maintaining state for the authenticated user. The
actingAs helper method provides a simple way to authenticate a given user as the current user. For
example, we may use a model factory to generate and authenticate a user:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testApplication()

6 {

7 $user = factory(App\User::class)->create();

8

9 $this->actingAs($user)

10 ->withSession(['foo' => 'bar'])

11 ->visit('/')

12 ->see('Hello, '.$user->name);

13 }

14 }

You may also specify which guard should be used to authenticate the given user by passing the
guard name as the second argument to the actingAs method:

1 $this->actingAs($user, 'api')

Disabling Middleware

When testing your application, you may find it convenient to disable middleware for some of your
tests. This will allow you to test your routes and controller in isolation from any middleware
concerns. Laravel includes a simple WithoutMiddleware trait that you can use to automatically
disable all middleware for the test class:

Application Testing 587

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class ExampleTest extends TestCase

8 {

9 use WithoutMiddleware;

10

11 //

12 }

If you would like to only disable middleware for a few test methods, you may call the withoutMid-
dleware method from within the test methods:

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 /**

6 * A basic functional test example.

7 *

8 * @return void

9 */

10 public function testBasicExample()

11 {

12 $this->withoutMiddleware();

13

14 $this->visit('/')

15 ->see('Laravel 5');

16 }

17 }

Custom HTTP Requests

If you would like to make a custom HTTP request into your application and get the full Illumi-
nate\Http\Response object, you may use the call method:

Application Testing 588

1 public function testApplication()

2 {

3 $response = $this->call('GET', '/');

4

5 $this->assertEquals(200, $response->status());

6 }

If you are making POST, PUT, or PATCH requests you may pass an array of input data with the request.
Of course, this data will be available in your routes and controller via the Request instance:

1 $response = $this->call('POST', '/user', ['name' => 'Taylor']);

PHPUnit Assertions

Laravel provides a variety of custom assertion methods for PHPUnit²⁵¹ tests:

Method | Description ————- | ————- ->assertResponseOk(); | Assert that the client response
has an OK status code. ->assertResponseStatus($code); | Assert that the client response has a
given code. ->assertViewHas($key, $value = null); | Assert that the response view has a given
piece of bound data. ->assertViewHasAll(array $bindings); | Assert that the view has a given
list of bound data. ->assertViewMissing($key); | Assert that the response view is missing a piece
of bound data. ->assertRedirectedTo($uri, $with = []); | Assert whether the client was redi-
rected to a given URI. ->assertRedirectedToRoute($name, $parameters = [], $with = []); |
Assert whether the client was redirected to a given route. ->assertRedirectedToAction($name,
$parameters = [], $with = []); | Assert whether the client was redirected to a given ac-
tion. ->assertSessionHas($key, $value = null); | Assert that the session has a given value. -
>assertSessionHasAll(array $bindings); | Assert that the session has a given list of values. -
>assertSessionHasErrors($bindings = [], $format = null); | Assert that the session has er-
rors bound. ->assertHasOldInput(); | Assert that the session has old input. ->assertSessionMissing($key);
| Assert that the session is missing a given key.

²⁵¹https://phpunit.de/

https://phpunit.de/
https://phpunit.de/

Database Testing
• Introduction
• Resetting The Database After Each Test A> - Using Migrations A> - Using Transactions
• Writing Factories A> - Factory States
• Using Factories A> - Creating Models A> - Persisting Models A> - Relationships

Introduction

Laravel provides a variety of helpful tools to make it easier to test your database driven applications.
First, you may use the seeInDatabase helper to assert that data exists in the database matching a
given set of criteria. For example, if you would like to verify that there is a record in the users table
with the email value of sally@example.com, you can do the following:

1 public function testDatabase()

2 {

3 // Make call to application...

4

5 $this->seeInDatabase('users', [

6 'email' => 'sally@example.com'

7]);

8 }

Of course, the seeInDatabase method and other helpers like it are for convenience. You are free to
use any of PHPUnit’s built-in assertion methods to supplement your tests.

Resetting The Database After Each Test

It is often useful to reset your database after each test so that data from a previous test does not
interfere with subsequent tests.

Using Migrations

One approach to resetting the database state is to rollback the database after each test and migrate
it before the next test. Laravel provides a simple DatabaseMigrations trait that will automatically
handle this for you. Simply use the trait on your test class and everything will be handled for you:

Database Testing 590

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class ExampleTest extends TestCase

8 {

9 use DatabaseMigrations;

10

11 /**

12 * A basic functional test example.

13 *

14 * @return void

15 */

16 public function testBasicExample()

17 {

18 $this->visit('/')

19 ->see('Laravel 5');

20 }

21 }

Using Transactions

Another approach to resetting the database state is to wrap each test case in a database transaction.
Again, Laravel provides a convenient DatabaseTransactions trait that will automatically handle
this for you:

1 <?php

2

3 use Illuminate\Foundation\Testing\WithoutMiddleware;

4 use Illuminate\Foundation\Testing\DatabaseMigrations;

5 use Illuminate\Foundation\Testing\DatabaseTransactions;

6

7 class ExampleTest extends TestCase

8 {

9 use DatabaseTransactions;

10

11 /**

12 * A basic functional test example.

Database Testing 591

13 *

14 * @return void

15 */

16 public function testBasicExample()

17 {

18 $this->visit('/')

19 ->see('Laravel 5');

20 }

21 }

{note} By default, this trait will only wrap the default database connection in a
transaction. If your application is using multiple database connections, you should
define a $connectionsToTransact property on your test class. This property should
be an array of connection names to execute the transactions on.

Writing Factories

When testing, you may need to insert a few records into your database before executing your test.
Instead of manually specifying the value of each column when you create this test data, Laravel
allows you to define a default set of attributes for each of your Eloquent models using model
factories. To get started, take a look at the database/factories/ModelFactory.php file in your
application. Out of the box, this file contains one factory definition:

1 $factory->define(App\User::class, function (Faker\Generator $faker) {

2 static $password;

3

4 return [

5 'name' => $faker->name,

6 'email' => $faker->unique()->safeEmail,

7 'password' => $password ?: $password = bcrypt('secret'),

8 'remember_token' => str_random(10),

9];

10 });

Within the Closure, which serves as the factory definition, you may return the default test values of
all attributes on the model. The Closure will receive an instance of the Faker²⁵² PHP library, which
allows you to conveniently generate various kinds of random data for testing.

²⁵²https://github.com/fzaninotto/Faker

https://github.com/fzaninotto/Faker
https://github.com/fzaninotto/Faker

Database Testing 592

Of course, you are free to add your own additional factories to the ModelFactory.php file. You may
also create additional factory files for each model for better organization. For example, you could
create UserFactory.php and CommentFactory.php files within your database/factories directory.
All of the files within the factories directory will automatically be loaded by Laravel.

Factory States

States allow you to define discrete modifications that can be applied to your model factories in any
combination. For example, your User model might have a delinquent state that modifies one of its
default attribute values. You may define your state transformations using the state method:

1 $factory->state(App\User::class, 'delinquent', function ($faker) {

2 return [

3 'account_status' => 'delinquent',

4];

5 });

Using Factories

Creating Models

Once you have defined your factories, you may use the global factory function in your tests or seed
files to generate model instances. So, let’s take a look at a few examples of creating models. First,
we’ll use the make method to create models but not save them to the database:

1 public function testDatabase()

2 {

3 $user = factory(App\User::class)->make();

4

5 // Use model in tests...

6 }

You may also create a Collection of many models or create models of a given type:

1 // Create three App\User instances...

2 $users = factory(App\User::class, 3)->make();

3

Database Testing 593

4 // Create an "admin" App\User instance...

5 $user = factory(App\User::class, 'admin')->make();

6

7 // Create three "admin" App\User instances...

8 $users = factory(App\User::class, 'admin', 3)->make();

Applying States

You may also apply any of your states to the models. If you would like to apply multiple state
transformations to the models, you should specify the name of each state you would like to apply:

1 $users = factory(App\User::class, 5)->states('deliquent')->make();

2

3 $users = factory(App\User::class, 5)->states('premium', 'deliquent')->make();

Overriding Attributes

If you would like to override some of the default values of your models, you may pass an array of
values to the make method. Only the specified values will be replaced while the rest of the values
remain set to their default values as specified by the factory:

1 $user = factory(App\User::class)->make([

2 'name' => 'Abigail',

3]);

Persisting Models

The create method not only creates the model instances but also saves them to the database using
Eloquent’s save method:

1 public function testDatabase()

2 {

3 // Create a single App\User instance...

4 $user = factory(App\User::class)->create();

5

Database Testing 594

6 // Create three App\User instances...

7 $users = factory(App\User::class, 3)->create();

8

9 // Use model in tests...

10 }

You may override attributes on the model by passing an array to the create method:

1 $user = factory(App\User::class)->create([

2 'name' => 'Abigail',

3]);

Relationships

In this example, we’ll attach a relation to some created models. When using the create method to
create multiple models, an Eloquent collection instance is returned, allowing you to use any of the
convenient functions provided by the collection, such as each:

1 $users = factory(App\User::class, 3)

2 ->create()

3 ->each(function ($u) {

4 $u->posts()->save(factory(App\Post::class)->make());

5 });

Relations & Attribute Closures

You may also attach relationships to models using Closure attributes in your factory definitions. For
example, if you would like to create a new User instance when creating a Post, you may do the
following:

1 $factory->define(App\Post::class, function ($faker) {

2 return [

3 'title' => $faker->title,

4 'content' => $faker->paragraph,

5 'user_id' => function () {

Database Testing 595

6 return factory(App\User::class)->create()->id;

7 }

8];

9 });

These Closures also receive the evaluated attribute array of the factory that contains them:

1 $factory->define(App\Post::class, function ($faker) {

2 return [

3 'title' => $faker->title,

4 'content' => $faker->paragraph,

5 'user_id' => function () {

6 return factory(App\User::class)->create()->id;

7 },

8 'user_type' => function (array $post) {

9 return App\User::find($post['user_id'])->type;

10 }

11];

12 });

Mocking
• Introduction
• Events A> - Using Mocks A> - Using Fakes
• Jobs A> - Using Mocks A> - Using Fakes
• Mail Fakes
• Notification Fakes
• Facades

Introduction

When testing Laravel applications, you may wish to “mock” certain aspects of your application so
they are not actually executed during a given test. For example, when testing a controller that fires
an event, you may wish to mock the event listeners so they are not actually executed during the test.
This allows you to only test the controller’s HTTP response without worrying about the execution
of the event listeners, since the event listeners can be tested in their own test case.

Laravel provides helpers formocking events, jobs, and facades out of the box. These helpers primarily
provide a convenience layer over Mockery so you do not have to manually make complicated
Mockery method calls. Of course, you are free to use Mockery²⁵³ or PHPUnit to create your own
mocks or spies.

Events

Using Mocks

If you are making heavy use of Laravel’s event system, you may wish to silence or mock certain
events while testing. For example, if you are testing user registration, you probably do not want all
of a UserRegistered event’s handlers firing, since the listeners may send “welcome” e-mails, etc.

Laravel provides a convenient expectsEvents method which verifies the expected events are fired,
but prevents any listeners for those events from executing:

²⁵³http://docs.mockery.io/en/latest/

http://docs.mockery.io/en/latest/
http://docs.mockery.io/en/latest/

Mocking 597

1 <?php

2

3 use App\Events\UserRegistered;

4

5 class ExampleTest extends TestCase

6 {

7 /**

8 * Test new user registration.

9 */

10 public function testUserRegistration()

11 {

12 $this->expectsEvents(UserRegistered::class);

13

14 // Test user registration...

15 }

16 }

You may use the doesntExpectEvents method to verify that the given events are not fired:

1 <?php

2

3 use App\Events\OrderShipped;

4 use App\Events\OrderFailedToShip;

5

6 class ExampleTest extends TestCase

7 {

8 /**

9 * Test order shipping.

10 */

11 public function testOrderShipping()

12 {

13 $this->expectsEvents(OrderShipped::class);

14 $this->doesntExpectEvents(OrderFailedToShip::class);

15

16 // Test order shipping...

17 }

18 }

If you would like to prevent all event listeners from running, you may use the withoutEvents

method. When this method is called, all listeners for all events will be mocked:

Mocking 598

1 <?php

2

3 class ExampleTest extends TestCase

4 {

5 public function testUserRegistration()

6 {

7 $this->withoutEvents();

8

9 // Test user registration code...

10 }

11 }

Using Fakes

As an alternative to mocking, you may use the Event facade’s fake method to prevent all event
listeners from executing. You may then assert that events were fired and even inspect the data they
received. When using fakes, assertions are made after the code under test is executed:

1 <?php

2

3 use App\Events\OrderShipped;

4 use App\Events\OrderFailedToShip;

5 use Illuminate\Support\Facades\Event;

6

7 class ExampleTest extends TestCase

8 {

9 /**

10 * Test order shipping.

11 */

12 public function testOrderShipping()

13 {

14 Event::fake();

15

16 // Perform order shipping...

17

18 Event::assertFired(OrderShipped::class, function ($e) use ($order) {

19 return $e->order->id === $order->id;

20 });

21

22 Event::assertNotFired(OrderFailedToShip::class);

Mocking 599

23 }

24 }

Jobs

Using Mocks

Sometimes, you may wish to test that given jobs are dispatched when making requests to your
application. This will allow you to test your routes and controllers in isolation without worrying
about your job’s logic. Of course, you should then test the job in a separate test case.

Laravel provides the convenient expectsJobs method which will verify that the expected jobs are
dispatched. However, the job itself will not be executed:

1 <?php

2

3 use App\Jobs\ShipOrder;

4

5 class ExampleTest extends TestCase

6 {

7 public function testOrderShipping()

8 {

9 $this->expectsJobs(ShipOrder::class);

10

11 // Test order shipping...

12 }

13 }

{note} This method only detects jobs that are dispatched via the DispatchesJobs trait’s
dispatch methods or the dispatch helper function. It does not detect queued jobs that
are sent directly to Queue::push.

Like the event mocking helpers, you may also test that a job is not dispatched using the doesntEx-
pectJobs method:

Mocking 600

1 <?php

2

3 use App\Jobs\ShipOrder;

4

5 class ExampleTest extends TestCase

6 {

7 /**

8 * Test order cancellation.

9 */

10 public function testOrderCancellation()

11 {

12 $this->doesntExpectJobs(ShipOrder::class);

13

14 // Test order cancellation...

15 }

16 }

Alternatively, you may ignore all dispatched jobs using the withoutJobsmethod. When this method
is called within a test method, all jobs that are dispatched during that test will be discarded:

1 <?php

2

3 use App\Jobs\ShipOrder;

4

5 class ExampleTest extends TestCase

6 {

7 /**

8 * Test order cancellation.

9 */

10 public function testOrderCancellation()

11 {

12 $this->withoutJobs();

13

14 // Test order cancellation...

15 }

16 }

Mocking 601

Using Fakes

As an alternative to mocking, you may use the Queue facade’s fake method to prevent jobs from
being queued. You may then assert that jobs were pushed to the queue and even inspect the data
they received. When using fakes, assertions are made after the code under test is executed:

1 <?php

2

3 use App\Jobs\ShipOrder;

4 use Illuminate\Support\Facades\Queue;

5

6 class ExampleTest extends TestCase

7 {

8 public function testOrderShipping()

9 {

10 Queue::fake();

11

12 // Perform order shipping...

13

14 Queue::assertPushed(ShipOrder::class, function ($job) use ($order) {

15 return $job->order->id === $order->id;

16 });

17

18 // Assert a job was pushed to a given queue...

19 Queue::assertPushedOn('queue-name', ShipOrder::class);

20

21 // Assert a job was not pushed...

22 Queue::assertNotPushed(AnotherJob::class);

23 }

24 }

Mail Fakes

Youmay use the Mail facade’s fakemethod to preventmail from being sent. Youmay then assert that
mailables were sent to users and even inspect the data they received. When using fakes, assertions
are made after the code under test is executed:

1 <?php

2

3 use App\Mail\OrderShipped;

Mocking 602

4 use Illuminate\Support\Facades\Mail;

5

6 class ExampleTest extends TestCase

7 {

8 public function testOrderShipping()

9 {

10 Mail::fake();

11

12 // Perform order shipping...

13

14 Mail::assertSent(OrderShipped::class, function ($mail) use ($order) {

15 return $mail->order->id === $order->id;

16 });

17

18 // Assert a message was sent to the given users...

19 Mail::assertSentTo([$user], OrderShipped::class);

20

21 // Assert a mailable was not sent...

22 Mail::assertNotSent(AnotherMailable::class);

23 }

24 }

Notification Fakes

You may use the Notification facade’s fake method to prevent notifications from being sent. You
may then assert that notifications were sent to users and even inspect the data they received. When
using fakes, assertions are made after the code under test is executed:

1 <?php

2

3 use App\Notifications\OrderShipped;

4 use Illuminate\Support\Facades\Notification;

5

6 class ExampleTest extends TestCase

7 {

8 public function testOrderShipping()

9 {

10 Notification::fake();

11

12 // Perform order shipping...

Mocking 603

13

14 Notification::assertSentTo(

15 $user,

16 OrderShipped::class,

17 function ($notification, $channels) use ($order) {

18 return $notification->order->id === $order->id;

19 }

20);

21

22 // Assert a notification was sent to the given users...

23 Notification::assertSentTo(

24 [$user], OrderShipped::class

25);

26

27 // Assert a notification was not sent...

28 Notification::assertNotSentTo(

29 [$user], AnotherNotification::class

30);

31 }

32 }

Facades

Unlike traditional static method calls, facades may be mocked. This provides a great advantage over
traditional static methods and grants you the same testability you would have if you were using
dependency injection. When testing, you may often want to mock a call to a Laravel facade in one
of your controllers. For example, consider the following controller action:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Illuminate\Support\Facades\Cache;

6

7 class UserController extends Controller

8 {

9 /**

10 * Show a list of all users of the application.

11 *

12 * @return Response

Mocking 604

13 */

14 public function index()

15 {

16 $value = Cache::get('key');

17

18 //

19 }

20 }

We can mock the call to the Cache facade by using the shouldReceive method, which will return
an instance of a Mockery²⁵⁴ mock. Since facades are actually resolved and managed by the Laravel
service container, they have muchmore testability than a typical static class. For example, let’s mock
our call to the Cache facade’s get method:

1 <?php

2

3 class FooTest extends TestCase

4 {

5 public function testGetIndex()

6 {

7 Cache::shouldReceive('get')

8 ->once()

9 ->with('key')

10 ->andReturn('value');

11

12 $this->visit('/users')->see('value');

13 }

14 }

{note} You should not mock the Request facade. Instead, pass the input you desire into
the HTTP helper methods such as call and post when running your test. Likewise,
instead of mocking the Config facade, simply call the Config::set method in your
tests.

²⁵⁴https://github.com/padraic/mockery

https://github.com/padraic/mockery
https://github.com/padraic/mockery

Laravel Cashier
• Introduction
• Configuration A> - Stripe A> - Braintree A> - Currency Configuration
• Subscriptions A> - Creating Subscriptions A> - Checking Subscription Status A> - Changing
Plans A> - Subscription Quantity A> - Subscription Taxes A> - Cancelling Subscriptions A> -
Resuming Subscriptions A> - Updating Credit Cards

• Subscription Trials A> - With Credit Card Up Front A> - Without Credit Card Up Front
• Handling Stripe Webhooks A> - Defining Webhook Event Handlers A> - Failed Subscriptions
• Handling Braintree Webhooks A> - Defining Webhook Event Handlers A> - Failed Subscrip-
tions

• Single Charges
• Invoices A> - Generating Invoice PDFs

Introduction

Laravel Cashier provides an expressive, fluent interface to Stripe’s²⁵⁵ and Braintree’s²⁵⁶ subscription
billing services. It handles almost all of the boilerplate subscription billing code you are dreading
writing. In addition to basic subscription management, Cashier can handle coupons, swapping
subscription, subscription “quantities”, cancellation grace periods, and even generate invoice PDFs.

{note} If you’re only performing “one-off” charges and do not offer subscriptions. You
should not use Cashier. You should use the Stripe and Braintree SDKs directly.

Configuration

Stripe

Composer

First, add the Cashier package for Stripe to your composer.json file and run the composer update

command:

²⁵⁵https://stripe.com
²⁵⁶https://www.braintreepayments.com

https://stripe.com/
https://www.braintreepayments.com/
https://stripe.com/
https://www.braintreepayments.com/

Laravel Cashier 606

1 "laravel/cashier": "~7.0"

Service Provider

Next, register the Laravel\Cashier\CashierServiceProvider service provider in your config/app.php
configuration file.

Database Migrations

Before using Cashier, we’ll also need to prepare the database. We need to add several columns to
your users table and create a new subscriptions table to hold all of our customer’s subscriptions:

1 Schema::table('users', function ($table) {

2 $table->string('stripe_id')->nullable();

3 $table->string('card_brand')->nullable();

4 $table->string('card_last_four')->nullable();

5 $table->timestamp('trial_ends_at')->nullable();

6 });

7

8 Schema::create('subscriptions', function ($table) {

9 $table->increments('id');

10 $table->integer('user_id');

11 $table->string('name');

12 $table->string('stripe_id');

13 $table->string('stripe_plan');

14 $table->integer('quantity');

15 $table->timestamp('trial_ends_at')->nullable();

16 $table->timestamp('ends_at')->nullable();

17 $table->timestamps();

18 });

Once the migrations have been created, run the migrate Artisan command.

Billable Model

Next, add the Billable trait to your model definition. This trait provides various methods to allow
you to perform common billing tasks, such as creating subscriptions, applying coupons, and updating
credit card information:

Laravel Cashier 607

1 use Laravel\Cashier\Billable;

2

3 class User extends Authenticatable

4 {

5 use Billable;

6 }

API Keys

Finally, you should configure your Stripe key in your services.php configuration file. You can
retrieve your Stripe API keys from the Stripe control panel:

1 'stripe' => [

2 'model' => App\User::class,

3 'secret' => env('STRIPE_SECRET'),

4],

Braintree

Braintree Caveats

For many operations, the Stripe and Braintree implementations of Cashier function the same. Both
services provide subscription billing with credit cards but Braintree also supports payments via
PayPal. However, Braintree also lacks some features that are supported by Stripe. You should keep
the following in mind when deciding to use Stripe or Braintree:

<div class=”content-list” markdown=”1”> - Braintree supports PayPal while Stripe does not. -
Braintree does not support the increment and decrement methods on subscriptions. This is a
Braintree limitation, not a Cashier limitation. - Braintree does not support percentage based
discounts. This is a Braintree limitation, not a Cashier limitation. </div>

Composer

First, add the Cashier package for Braintree to your composer.json file and run the composer update

command:

Laravel Cashier 608

1 "laravel/cashier-braintree": "~2.0"

Service Provider

Next, register the Laravel\Cashier\CashierServiceProvider service provider in your config/app.php
configuration file.

Plan Credit Coupon

Before using Cashier with Braintree, you will need to define a plan-credit discount in your
Braintree control panel. This discount will be used to properly prorate subscriptions that change
from yearly to monthly billing, or from monthly to yearly billing.

The discount amount configured in the Braintree control panel can be any value youwish, as Cashier
will simply override the defined amount with our own custom amount each time we apply the
coupon. This coupon is needed since Braintree does not natively support prorating subscriptions
across subscription frequencies.

Database Migrations

Before using Cashier, we’ll need to prepare the database. We need to add several columns to your
users table and create a new subscriptions table to hold all of our customer’s subscriptions:

1 Schema::table('users', function ($table) {

2 $table->string('braintree_id')->nullable();

3 $table->string('paypal_email')->nullable();

4 $table->string('card_brand')->nullable();

5 $table->string('card_last_four')->nullable();

6 $table->timestamp('trial_ends_at')->nullable();

7 });

8

9 Schema::create('subscriptions', function ($table) {

10 $table->increments('id');

11 $table->integer('user_id');

12 $table->string('name');

13 $table->string('braintree_id');

14 $table->string('braintree_plan');

15 $table->integer('quantity');

16 $table->timestamp('trial_ends_at')->nullable();

17 $table->timestamp('ends_at')->nullable();

18 $table->timestamps();

Laravel Cashier 609

19 });

Once the migrations have been created, simply run the migrate Artisan command.

Billable Model

Next, add the Billable trait to your model definition:

1 use Laravel\Cashier\Billable;

2

3 class User extends Authenticatable

4 {

5 use Billable;

6 }

API Keys

Next, You should configure the following options in your services.php file:

1 'braintree' => [

2 'model' => App\User::class,

3 'environment' => env('BRAINTREE_ENV'),

4 'merchant_id' => env('BRAINTREE_MERCHANT_ID'),

5 'public_key' => env('BRAINTREE_PUBLIC_KEY'),

6 'private_key' => env('BRAINTREE_PRIVATE_KEY'),

7],

Then you should add the following Braintree SDK calls to your AppServiceProvider service
provider’s boot method:

1 \Braintree_Configuration::environment(config('services.braintree.environment'));

2 \Braintree_Configuration::merchantId(config('services.braintree.merchant_id'));

3 \Braintree_Configuration::publicKey(config('services.braintree.public_key'));

4 \Braintree_Configuration::privateKey(config('services.braintree.private_key'));

Laravel Cashier 610

Currency Configuration

The default Cashier currency is United States Dollars (USD). You can change the default currency
by calling the Cashier::useCurrency method from within the boot method of one of your service
providers. The useCurrencymethod accepts two string parameters: the currency and the currency’s
symbol:

1 use Laravel\Cashier\Cashier;

2

3 Cashier::useCurrency('eur', 'â‚¬');

Subscriptions

Creating Subscriptions

To create a subscription, first retrieve an instance of your billable model, which typically will
be an instance of App\User. Once you have retrieved the model instance, you may use the
newSubscription method to create the model’s subscription:

1 $user = User::find(1);

2

3 $user->newSubscription('main', 'monthly')->create($creditCardToken);

The first argument passed to the newSubscription method should be the name of the subscription.
If your application only offers a single subscription, you might call this main or primary. The
second argument is the specific Stripe / Braintree plan the user is subscribing to. This value should
correspond to the plan’s identifier in Stripe or Braintree.

The create method will begin the subscription as well as update your database with the customer
ID and other relevant billing information.

Additional User Details

If youwould like to specify additional customer details, youmay do so by passing them as the second
argument to the create method:

Laravel Cashier 611

1 $user->newSubscription('main', 'monthly')->create($creditCardToken, [

2 'email' => $email,

3]);

To learn more about the additional fields supported by Stripe or Braintree, check out Stripe’s
documentation on customer creation²⁵⁷ or the corresponding Braintree documentation²⁵⁸.

Coupons

If you would like to apply a coupon when creating the subscription, you may use the withCoupon
method:

1 $user->newSubscription('main', 'monthly')

2 ->withCoupon('code')

3 ->create($creditCardToken);

Checking Subscription Status

Once a user is subscribed to your application, you may easily check their subscription status using a
variety of convenient methods. First, the subscribed method returns true if the user has an active
subscription, even if the subscription is currently within its trial period:

1 if ($user->subscribed('main')) {

2 //

3 }

The subscribedmethod also makes a great candidate for a route middleware, allowing you to filter
access to routes and controllers based on the user’s subscription status:

1 public function handle($request, Closure $next)

2 {

3 if ($request->user() && ! $request->user()->subscribed('main')) {

4 // This user is not a paying customer...

²⁵⁷https://stripe.com/docs/api#create_customer
²⁵⁸https://developers.braintreepayments.com/reference/request/customer/create/php

https://stripe.com/docs/api#create_customer
https://developers.braintreepayments.com/reference/request/customer/create/php
https://stripe.com/docs/api#create_customer
https://developers.braintreepayments.com/reference/request/customer/create/php

Laravel Cashier 612

5 return redirect('billing');

6 }

7

8 return $next($request);

9 }

If you would like to determine if a user is still within their trial period, you may use the onTrial
method. This method can be useful for displaying a warning to the user that they are still on their
trial period:

1 if ($user->subscription('main')->onTrial()) {

2 //

3 }

The subscribedToPlan method may be used to determine if the user is subscribed to a given plan
based on a given Stripe / Braintree plan ID. In this example, we will determine if the user’s main
subscription is actively subscribed to the monthly plan:

1 if ($user->subscribedToPlan('monthly', 'main')) {

2 //

3 }

Cancelled Subscription Status

To determine if the user was once an active subscriber, but has cancelled their subscription, you may
use the cancelled method:

1 if ($user->subscription('main')->cancelled()) {

2 //

3 }

You may also determine if a user has cancelled their subscription, but are still on their “grace period”
until the subscription fully expires. For example, if a user cancels a subscription on March 5th that
was originally scheduled to expire on March 10th, the user is on their “grace period” until March
10th. Note that the subscribed method still returns true during this time:

Laravel Cashier 613

1 if ($user->subscription('main')->onGracePeriod()) {

2 //

3 }

Changing Plans

After a user is subscribed to your application, they may occasionally want to change to a new
subscription plan. To swap a user to a new subscription, pass the plan’s identifier to the swapmethod:

1 $user = App\User::find(1);

2

3 $user->subscription('main')->swap('provider-plan-id');

If the user is on trial, the trial period will be maintained. Also, if a “quantity” exists for the
subscription, that quantity will also be maintained.

If you would like to swap plans and cancel any trial period the user is currently on, you may use the
skipTrial method:

1 $user->subscription('main')

2 ->skipTrial()

3 ->swap('provider-plan-id');

Subscription Quantity

{note} Subscription quantities are only supported by the Stripe edition of Cashier.
Braintree does not have a feature that corresponds to Stripe’s “quantity”.

Sometimes subscriptions are affected by “quantity”. For example, your application might charge $10
per month per user on an account. To easily increment or decrement your subscription quantity,
use the incrementQuantity and decrementQuantity methods:

Laravel Cashier 614

1 $user = User::find(1);

2

3 $user->subscription('main')->incrementQuantity();

4

5 // Add five to the subscription's current quantity...

6 $user->subscription('main')->incrementQuantity(5);

7

8 $user->subscription('main')->decrementQuantity();

9

10 // Subtract five to the subscription's current quantity...

11 $user->subscription('main')->decrementQuantity(5);

Alternatively, you may set a specific quantity using the updateQuantity method:

1 $user->subscription('main')->updateQuantity(10);

For more information on subscription quantities, consult the Stripe documentation²⁵⁹.

Subscription Taxes

To specify the tax percentage a user pays on a subscription, implement the taxPercentage method
on your billable model, and return a numeric value between 0 and 100, with no more than 2 decimal
places.

1 public function taxPercentage() {

2 return 20;

3 }

The taxPercentage method enables you to apply a tax rate on a model-by-model basis, which may
be helpful for a user base that spans multiple countries and tax rates.

{note} The taxPercentage method only applies to subscription charges. If you use
Cashier to make “one off” charges, you will need to manually specify the tax rate at
that time.

²⁵⁹https://stripe.com/docs/guides/subscriptions#setting-quantities

https://stripe.com/docs/guides/subscriptions#setting-quantities
https://stripe.com/docs/guides/subscriptions#setting-quantities

Laravel Cashier 615

Cancelling Subscriptions

To cancel a subscription, simply call the cancel method on the user’s subscription:

1 $user->subscription('main')->cancel();

When a subscription is cancelled, Cashier will automatically set the ends_at column in your
database. This column is used to know when the subscribedmethod should begin returning false.
For example, if a customer cancels a subscription on March 1st, but the subscription was not
scheduled to end until March 5th, the subscribed method will continue to return true until March
5th.

You may determine if a user has cancelled their subscription but are still on their “grace period”
using the onGracePeriod method:

1 if ($user->subscription('main')->onGracePeriod()) {

2 //

3 }

If you wish to cancel a subscription immediately, call the cancelNow method on the user’s
subscription:

1 $user->subscription('main')->cancelNow();

Resuming Subscriptions

If a user has cancelled their subscription and you wish to resume it, use the resume method. The
user must still be on their grace period in order to resume a subscription:

1 $user->subscription('main')->resume();

If the user cancels a subscription and then resumes that subscription before the subscription has fully
expired, they will not be billed immediately. Instead, their subscription will simply be re-activated,
and they will be billed on the original billing cycle.

Laravel Cashier 616

Updating Credit Cards

The updateCard method may be used to update a customer’s credit card information. This method
accepts a Stripe token and will assign the new credit card as the default billing source:

1 $user->updateCard($creditCardToken);

Subscription Trials

With Credit Card Up Front

If you would like to offer trial periods to your customers while still collecting payment method
information up front, You should use the trialDays method when creating your subscriptions:

1 $user = User::find(1);

2

3 $user->newSubscription('main', 'monthly')

4 ->trialDays(10)

5 ->create($creditCardToken);

This method will set the trial period ending date on the subscription record within the database, as
well as instruct Stripe / Braintree to not begin billing the customer until after this date.

{note} If the customer’s subscription is not cancelled before the trial ending date they
will be charged as soon as the trial expires, so you should be sure to notify your users
of their trial ending date.

You may determine if the user is within their trial period using either the onTrialmethod of the user
instance, or the onTrialmethod of the subscription instance. The two examples below are identical:

1 if ($user->onTrial('main')) {

2 //

3 }

4

5 if ($user->subscription('main')->onTrial()) {

Laravel Cashier 617

6 //

7 }

Without Credit Card Up Front

If you would like to offer trial periods without collecting the user’s payment method information up
front, you may simply set the trial_ends_at column on the user record to your desired trial ending
date. This is typically done during user registration:

1 $user = User::create([

2 // Populate other user properties...

3 'trial_ends_at' => Carbon::now()->addDays(10),

4]);

{note} Be sure to add a date mutator for trial_ends_at to your model definition.

Cashier refers to this type of trial as a “generic trial”, since it is not attached to any existing
subscription. The onTrial method on the User instance will return true if the current date is not
past the value of trial_ends_at:

1 if ($user->onTrial()) {

2 // User is within their trial period...

3 }

Youmay also use the onGenericTrialmethod if youwish to know specifically that the user is within
their “generic” trial period and has not created an actual subscription yet:

1 if ($user->onGenericTrial()) {

2 // User is within their "generic" trial period...

3 }

Once you are ready to create an actual subscription for the user, you may use the newSubscription
method as usual:

Laravel Cashier 618

1 $user = User::find(1);

2

3 $user->newSubscription('main', 'monthly')->create($creditCardToken);

Handling Stripe Webhooks

Both Stripe and Braintree can notify your application of a variety of events via webhooks. To handle
Stripe webhooks, define a route that points to Cashier’s webhook controller. This controller will
handle all incoming webhook requests and dispatch them to the proper controller method:

1 Route::post(

2 'stripe/webhook',

3 '\Laravel\Cashier\Http\Controllers\WebhookController@handleWebhook'

4);

{note} Once you have registered your route, be sure to configure the webhook URL in
your Stripe control panel settings.

By default, this controller will automatically handle cancelling subscriptions that have too many
failed charges (as defined by your Stripe settings); however, as we’ll soon discover, you can extend
this controller to handle any webhook event you like.

Webhooks & CSRF Protection

Since Stripe webhooks need to bypass Laravel’s CSRF protection, be sure to list the URI as an
exception in your VerifyCsrfToken middleware or list the route outside of the web middleware
group:

1 protected $except = [

2 'stripe/*',

3];

Laravel Cashier 619

Defining Webhook Event Handlers

Cashier automatically handles subscription cancellation on failed charges, but if you have additional
Stripe webhook events you would like to handle, simply extend the Webhook controller. Your
method names should correspond to Cashier’s expected convention, specifically, methods should
be prefixed with handle and the “camel case” name of the Stripe webhook you wish to handle.
For example, if you wish to handle the invoice.payment_succeeded webhook, you should add a
handleInvoicePaymentSucceeded method to the controller:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Laravel\Cashier\Http\Controllers\WebhookController as CashierController;

6

7 class WebhookController extends CashierController

8 {

9 /**

10 * Handle a Stripe webhook.

11 *

12 * @param array $payload

13 * @return Response

14 */

15 public function handleInvoicePaymentSucceeded($payload)

16 {

17 // Handle The Event

18 }

19 }

Failed Subscriptions

What if a customer’s credit card expires? No worries - Cashier includes a Webhook controller that
can easily cancel the customer’s subscription for you. As noted above, all you need to do is point a
route to the controller:

1 Route::post(

2 'stripe/webhook',

3 '\Laravel\Cashier\Http\Controllers\WebhookController@handleWebhook'

4);

Laravel Cashier 620

That’s it! Failed payments will be captured and handled by the controller. The controller will cancel
the customer’s subscription when Stripe determines the subscription has failed (normally after three
failed payment attempts).

Handling Braintree Webhooks

Both Stripe and Braintree can notify your application of a variety of events via webhooks. To handle
Braintree webhooks, define a route that points to Cashier’s webhook controller. This controller will
handle all incoming webhook requests and dispatch them to the proper controller method:

1 Route::post(

2 'braintree/webhook',

3 '\Laravel\Cashier\Http\Controllers\WebhookController@handleWebhook'

4);

{note} Once you have registered your route, be sure to configure the webhook URL in
your Braintree control panel settings.

By default, this controller will automatically handle cancelling subscriptions that have too many
failed charges (as defined by your Braintree settings); however, as we’ll soon discover, you can extend
this controller to handle any webhook event you like.

Webhooks & CSRF Protection

Since Braintree webhooks need to bypass Laravel’s CSRF protection, be sure to list the URI as an
exception in your VerifyCsrfToken middleware or list the route outside of the web middleware
group:

1 protected $except = [

2 'braintree/*',

3];

Defining Webhook Event Handlers

Cashier automatically handles subscription cancellation on failed charges, but if you have additional
Braintree webhook events you would like to handle, simply extend the Webhook controller.

Laravel Cashier 621

Your method names should correspond to Cashier’s expected convention, specifically, methods
should be prefixed with handle and the “camel case” name of the Braintree webhook you wish
to handle. For example, if you wish to handle the dispute_opened webhook, you should add a
handleDisputeOpened method to the controller:

1 <?php

2

3 namespace App\Http\Controllers;

4

5 use Braintree\WebhookNotification;

6 use Laravel\Cashier\Http\Controllers\WebhookController as CashierController;

7

8 class WebhookController extends CashierController

9 {

10 /**

11 * Handle a Braintree webhook.

12 *

13 * @param WebhookNotification $webhook

14 * @return Response

15 */

16 public function handleDisputeOpened(WebhookNotification $notification)

17 {

18 // Handle The Event

19 }

20 }

Failed Subscriptions

What if a customer’s credit card expires? No worries - Cashier includes a Webhook controller that
can easily cancel the customer’s subscription for you. Just point a route to the controller:

1 Route::post(

2 'braintree/webhook',

3 '\Laravel\Cashier\Http\Controllers\WebhookController@handleWebhook'

4);

That’s it! Failed payments will be captured and handled by the controller. The controller will cancel
the customer’s subscription when Braintree determines the subscription has failed (normally after
three failed payment attempts). Don’t forget: you will need to configure the webhook URI in your

Laravel Cashier 622

Braintree control panel settings.

Single Charges

Simple Charge

{note} When using Stripe, the charge method accepts the amount you would like
to charge in the lowest denominator of the currency used by your application.
However, when using Braintree, you should pass the full dollar amount to the charge
method:

If you would like to make a “one off” charge against a subscribed customer’s credit card, you may
use the charge method on a billable model instance.

1 // Stripe Accepts Charges In Cents...

2 $user->charge(100);

3

4 // Braintree Accepts Charges In Dollars...

5 $user->charge(1);

The charge method accepts an array as its second argument, allowing you to pass any options
you wish to the underlying Stripe / Braintree charge creation. Consult the Stripe or Braintree
documentation regarding the options available to you when creating charges:

1 $user->charge(100, [

2 'custom_option' => $value,

3]);

The charge method will throw an exception if the charge fails. If the charge is successful, the full
Stripe / Braintree response will be returned from the method:

1 try {

2 $response = $user->charge(100);

3 } catch (Exception $e) {

4 //

5 }

Laravel Cashier 623

Charge With Invoice

Sometimes you may need to make a one-time charge but also generate an invoice for the charge so
that you may offer a PDF receipt to your customer. The invoiceFor method lets you do just that.
For example, let’s invoice the customer $5.00 for a “One Time Fee”:

1 // Stripe Accepts Charges In Cents...

2 $user->invoiceFor('One Time Fee', 500);

3

4 // Braintree Accepts Charges In Dollars...

5 $user->invoiceFor('One Time Fee', 5);

The invoice will be charged immediately against the user’s credit card. The invoiceFormethod also
accepts an array as its third argument, allowing you to pass any options you wish to the underlying
Stripe / Braintree charge creation:

1 $user->invoiceFor('One Time Fee', 500, [

2 'custom-option' => $value,

3]);

{note} The invoiceFormethod will create a Stripe invoice which will retry failed billing
attempts. If you do not want invoices to retry failed charges, you will need to close them
using the Stripe API after the first failed charge.

Invoices

You may easily retrieve an array of a billable model’s invoices using the invoices method:

1 $invoices = $user->invoices();

2

3 // Include pending invoices in the results...

4 $invoices = $user->invoicesIncludingPending();

Laravel Cashier 624

When listing the invoices for the customer, you may use the invoice’s helper methods to display the
relevant invoice information. For example, you may wish to list every invoice in a table, allowing
the user to easily download any of them:

1 <table>

2 @foreach ($invoices as $invoice)

3 <tr>

4 <td>{{ $invoice->date()->toFormattedDateString() }}</td>

5 <td>{{ $invoice->total() }}</td>

6 <td>id }}">Download</td>

7 </tr>

8 @endforeach

9 </table>

Generating Invoice PDFs

Before generating invoice PDFs, you need to install the dompdf PHP library:

1 composer require dompdf/dompdf

Then, from within a route or controller, use the downloadInvoice method to generate a PDF
download of the invoice. This method will automatically generate the proper HTTP response to
send the download to the browser:

1 use Illuminate\Http\Request;

2

3 Route::get('user/invoice/{invoice}', function (Request $request, $invoiceId) {

4 return $request->user()->downloadInvoice($invoiceId, [

5 'vendor' => 'Your Company',

6 'product' => 'Your Product',

7]);

8 });

Envoy Task Runner
• Introduction A> - Installation
• Writing Tasks A> - Setup A> - Variables A> - Stories A> - Multiple Servers
• Running Tasks A> - Confirming Task Execution
• Notifications A> - Slack

Introduction

Laravel Envoy²⁶⁰ provides a clean, minimal syntax for defining common tasks you run on your
remote servers. Using Blade style syntax, you can easily setup tasks for deployment, Artisan
commands, and more. Currently, Envoy only supports the Mac and Linux operating systems.

Installation

First, install Envoy using the Composer global require command:

1 composer global require "laravel/envoy=~1.0"

Since global Composer libraries can sometimes cause package version conflicts, you may wish to
consider using cgr, which is a drop-in replacement for the composer global require command.
The cgr library’s installation instructions can be found on GitHub²⁶¹.

{note} Make sure to place the∼/.composer/vendor/bin directory in your PATH so the
envoy executable is found when running the envoy command in your terminal.

Updating Envoy

Youmay also use Composer to keep your Envoy installation up to date. Issuing the composer global

update command will update all of your globally installed Composer packages:

²⁶⁰https://github.com/laravel/envoy
²⁶¹https://github.com/consolidation-org/cgr

https://github.com/laravel/envoy
https://github.com/consolidation-org/cgr
https://github.com/laravel/envoy
https://github.com/consolidation-org/cgr

Envoy Task Runner 626

1 composer global update

Writing Tasks

All of your Envoy tasks should be defined in an Envoy.blade.php file in the root of your project.
Here’s an example to get you started:

1 @servers(['web' => ['user@192.168.1.1']])

2

3 @task('foo', ['on' => 'web'])

4 ls -la

5 @endtask

As you can see, an array of @servers is defined at the top of the file, allowing you to reference these
servers in the on option of your task declarations. Within your @task declarations, you should place
the Bash code that should run on your server when the task is executed.

You can force a script to run locally by specifying the server’s IP address as 127.0.0.1:

1 @servers(['localhost' => '127.0.0.1'])

Setup

Sometimes, you may need to execute some PHP code before executing your Envoy tasks. You may
use the @setup directive to declare variables and do other general PHP work before any of your
other tasks are executed:

1 @setup

2 $now = new DateTime();

3

4 $environment = isset($env) ? $env : "testing";

5 @endsetup

Envoy Task Runner 627

If you need to require other PHP files before your task is executed, you may use the @include

directive at the top of your Envoy.blade.php file:

1 @include('vendor/autoload.php')

2

3 @task('foo')

4 # ...

5 @endtask

Variables

If needed, you may pass option values into Envoy tasks using the command line:

1 envoy run deploy --branch=master

You may access the options in your tasks via Blade’s “echo” syntax. Of course, you may also use
if statements and loops within your tasks. For example, let’s verify the presence of the $branch

variable before executing the git pull command:

1 @servers(['web' => '192.168.1.1'])

2

3 @task('deploy', ['on' => 'web'])

4 cd site

5

6 @if ($branch)

7 git pull origin {{ $branch }}

8 @endif

9

10 php artisan migrate

11 @endtask

Stories

Stories group a set of tasks under a single, convenient name, allowing you to group small, focused
tasks into large tasks. For instance, a deploy story may run the git and composer tasks by listing
the task names within its definition:

Envoy Task Runner 628

1 @servers(['web' => '192.168.1.1'])

2

3 @story('deploy')

4 git

5 composer

6 @endstory

7

8 @task('git')

9 git pull origin master

10 @endtask

11

12 @task('composer')

13 composer install

14 @endtask

Once the story has been written, you may run it just like a typical task:

1 envoy run deploy

Multiple Servers

Envoy allows you to easily run a task across multiple servers. First, add additional servers to your
@servers declaration. Each server should be assigned a unique name. Once you have defined your
additional servers, list each of the servers in the task’s on array:

1 @servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

2

3 @task('deploy', ['on' => ['web-1', 'web-2']])

4 cd site

5 git pull origin {{ $branch }}

6 php artisan migrate

7 @endtask

Parallel Execution

By default, tasks will be executed on each server serially. In other words, a task will finish running
on the first server before proceeding to execute on the second server. If you would like to run a task

Envoy Task Runner 629

across multiple servers in parallel, add the parallel option to your task declaration:

1 @servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

2

3 @task('deploy', ['on' => ['web-1', 'web-2'], 'parallel' => true])

4 cd site

5 git pull origin {{ $branch }}

6 php artisan migrate

7 @endtask

Running Tasks

To run a task or story that is defined in your Envoy.blade.php file, execute Envoy’s run command,
passing the name of the task or story you would like to execute. Envoy will run the task and display
the output from the servers as the task is running:

1 envoy run task

Confirming Task Execution

If you would like to be prompted for confirmation before running a given task on your servers,
you should add the confirm directive to your task declaration. This option is particularly useful for
destructive operations:

1 @task('deploy', ['on' => 'web', 'confirm' => true])

2 cd site

3 git pull origin {{ $branch }}

4 php artisan migrate

5 @endtask

 ## Notifications {#envoy-hipchat-notifications}

Envoy Task Runner 630

Slack

Envoy also supports sending notifications to Slack²⁶² after each task is executed. The @slack directive
accepts a Slack hook URL and a channel name. You may retrieve your webhook URL by creating an
“Incoming WebHooks” integration in your Slack control panel. You should pass the entire webhook
URL into the @slack directive:

1 @finished

2 @slack('webhook-url', '#bots')

3 @endfinished

You may provide one of the following as the channel argument:

<div class=”content-list” markdown=”1”> - To send the notification to a channel: #channel - To send
the notification to a user: @user </div>

²⁶²https://slack.com

https://slack.com/
https://slack.com/

API Authentication (Passport)
• Introduction
• Installation A> - Frontend Quickstart
• Configuration A> - Token Lifetimes
• Issuing Access Tokens A> - Managing Clients A> - Requesting Tokens A> - Refreshing Tokens
• Password Grant Tokens A> - Creating A Password Grant Client A> - Requesting Tokens A> -
Requesting All Scopes

• Implicit Grant Tokens
• Personal Access Tokens A> - Creating A Personal Access Client A> - Managing Personal
Access Tokens

• Protecting Routes A> - Via Middleware A> - Passing The Access Token
• Token Scopes A> - Defining Scopes A> - Assigning Scopes To Tokens A> - Checking Scopes
• Consuming Your API With JavaScript
• Events

Introduction

Laravel already makes it easy to perform authentication via traditional login forms, but what about
APIs? APIs typically use tokens to authenticate users and do not maintain session state between
requests. Laravel makes API authentication a breeze using Laravel Passport, which provides a full
OAuth2 server implementation for your Laravel application in a matter of minutes. Passport is built
on top of the League OAuth2 server²⁶³ that is maintained by Alex Bilbie.

{note} This documentation assumes you are already familiar with OAuth2. If you do
not know anything about OAuth2, consider familiarizing yourself with the general
terminology and features of OAuth2 before continuing.

Installation

To get started, install Passport via the Composer package manager:

²⁶³https://github.com/thephpleague/oauth2-server

https://github.com/thephpleague/oauth2-server
https://github.com/thephpleague/oauth2-server

API Authentication (Passport) 632

1 composer require laravel/passport

Next, register the Passport service provider in the providers array of your config/app.php

configuration file:

1 Laravel\Passport\PassportServiceProvider::class,

The Passport service provider registers its own database migration directory with the framework, so
you should migrate your database after registering the provider. The Passport migrations will create
the tables your application needs to store clients and access tokens:

1 php artisan migrate

Next, you should run the passport:install command. This command will create the encryption
keys needed to generate secure access tokens. In addition, the command will create “personal access”
and “password grant” clients which will be used to generate access tokens:

1 php artisan passport:install

After running this command, add the Laravel\Passport\HasApiTokens trait to your App\User

model. This trait will provide a few helper methods to your model which allow you to inspect
the authenticated user’s token and scopes:

1 <?php

2

3 namespace App;

4

5 use Laravel\Passport\HasApiTokens;

6 use Illuminate\Notifications\Notifiable;

7 use Illuminate\Foundation\Auth\User as Authenticatable;

8

9 class User extends Authenticatable

10 {

API Authentication (Passport) 633

11 use HasApiTokens, Notifiable;

12 }

Next, you should call the Passport::routes method within the boot method of your AuthServi-
ceProvider. This method will register the routes necessary to issue access tokens and revoke access
tokens, clients, and personal access tokens:

1 <?php

2

3 namespace App\Providers;

4

5 use Laravel\Passport\Passport;

6 use Illuminate\Support\Facades\Gate;

7 use Illuminate\Foundation\Support\Providers\AuthServiceProvider as ServiceProvid\

8 er;

9

10 class AuthServiceProvider extends ServiceProvider

11 {

12 /**

13 * The policy mappings for the application.

14 *

15 * @var array

16 */

17 protected $policies = [

18 'App\Model' => 'App\Policies\ModelPolicy',

19];

20

21 /**

22 * Register any authentication / authorization services.

23 *

24 * @return void

25 */

26 public function boot()

27 {

28 $this->registerPolicies();

29

30 Passport::routes();

31 }

32 }

API Authentication (Passport) 634

Finally, in your config/auth.php configuration file, you should set the driver option of the api

authentication guard to passport. This will instruct your application to use Passport’s TokenGuard
when authenticating incoming API requests:

1 'guards' => [

2 'web' => [

3 'driver' => 'session',

4 'provider' => 'users',

5],

6

7 'api' => [

8 'driver' => 'passport',

9 'provider' => 'users',

10],

11],

Frontend Quickstart

{note} In order to use the Passport Vue components, you must be using the Vue²⁶⁴
JavaScript framework. These components also use the Bootstrap CSS framework.
However, even if you are not using these tools, the components serve as a valuable
reference for your own frontend implementation.

Passport ships with a JSON API that you may use to allow your users to create clients and personal
access tokens. However, it can be time consuming to code a frontend to interact with these APIs. So,
Passport also includes pre-built Vue²⁶⁵ components you may use as an example implementation or
starting point for your own implementation.

To publish the Passport Vue components, use the vendor:publish Artisan command:

1 php artisan vendor:publish --tag=passport-components

The published components will be placed in your resources/assets/js/components directory.
Once the components have been published, you should register them in your resources/asset-
s/js/app.js file:

²⁶⁴https://vuejs.org
²⁶⁵https://vuejs.org

https://vuejs.org/
https://vuejs.org/
https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 635

1 Vue.component(

2 'passport-clients',

3 require('./components/passport/Clients.vue')

4);

5

6 Vue.component(

7 'passport-authorized-clients',

8 require('./components/passport/AuthorizedClients.vue')

9);

10

11 Vue.component(

12 'passport-personal-access-tokens',

13 require('./components/passport/PersonalAccessTokens.vue')

14);

Once the components have been registered, you may drop them into one of your application’s
templates to get started creating clients and personal access tokens:

1 <passport-clients></passport-clients>

2 <passport-authorized-clients></passport-authorized-clients>

3 <passport-personal-access-tokens></passport-personal-access-tokens>

Configuration

Token Lifetimes

By default, Passport issues long-lived access tokens that never need to be refreshed. If you would like
to configure a shorter token lifetime, you may use the tokensExpireIn and refreshTokensExpireIn
methods. These methods should be called from the boot method of your AuthServiceProvider:

1 use Carbon\Carbon;

2

3 /**

4 * Register any authentication / authorization services.

5 *

6 * @return void

7 */

API Authentication (Passport) 636

8 public function boot()

9 {

10 $this->registerPolicies();

11

12 Passport::routes();

13

14 Passport::tokensExpireIn(Carbon::now()->addDays(15));

15

16 Passport::refreshTokensExpireIn(Carbon::now()->addDays(30));

17 }

Issuing Access Tokens

Using OAuth2 with authorization codes is how most developers are familiar with OAuth2. When
using authorization codes, a client application will redirect a user to your server where they will
either approve or deny the request to issue an access token to the client.

Managing Clients

First, developers building applications that need to interact with your application’s API will need to
register their application with yours by creating a “client”. Typically, this consists of providing the
name of their application and a URL that your application can redirect to after users approve their
request for authorization.

The passport:client Command

The simplest way to create a client is using the passport:client Artisan command. This command
may be used to create your own clients for testing your OAuth2 functionality. When you run the
client command, Passport will prompt you for more information about your client and will provide
you with a client ID and secret:

1 php artisan passport:client

JSON API

Since your users will not be able to utilize the client command, Passport provides a JSON API that
you may use to create clients. This saves you the trouble of having to manually code controllers for
creating, updating, and deleting clients.

API Authentication (Passport) 637

However, you will need to pair Passport’s JSON API with your own frontend to provide a dashboard
for your users to manage their clients. Below, we’ll review all of the API endpoints for managing
clients. For convenience, we’ll use Vue²⁶⁶ to demonstrate making HTTP requests to the endpoints.

{tip} If you don’t want to implement the entire client management frontend yourself,
you can use the frontend quickstart to have a fully functional frontend in a matter of
minutes.

GET /oauth/clients

This route returns all of the clients for the authenticated user. This is primarily useful for listing all
of the user’s clients so that they may edit or delete them:

1 this.$http.get('/oauth/clients')

2 .then(response => {

3 console.log(response.data);

4 });

POST /oauth/clients

This route is used to create new clients. It requires two pieces of data: the client’s name and a redirect
URL. The redirect URL is where the user will be redirected after approving or denying a request
for authorization.

When a client is created, it will be issued a client ID and client secret. These values will be used
when requesting access tokens from your application. The client creation route will return the new
client instance:

1 const data = {

2 name: 'Client Name',

3 redirect: 'http://example.com/callback'

4 };

5

6 this.$http.post('/oauth/clients', data)

7 .then(response => {

8 console.log(response.data);

9 })

10 .catch (response => {

²⁶⁶https://vuejs.org

https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 638

11 // List errors on response...

12 });

PUT /oauth/clients/{client-id}

This route is used to update clients. It requires two pieces of data: the client’s name and a redirect
URL. The redirect URL is where the user will be redirected after approving or denying a request
for authorization. The route will return the updated client instance:

1 const data = {

2 name: 'New Client Name',

3 redirect: 'http://example.com/callback'

4 };

5

6 this.$http.put('/oauth/clients/' + clientId, data)

7 .then(response => {

8 console.log(response.data);

9 })

10 .catch (response => {

11 // List errors on response...

12 });

DELETE /oauth/clients/{client-id}

This route is used to delete clients:

1 this.$http.delete('/oauth/clients/' + clientId)

2 .then(response => {

3 //

4 });

Requesting Tokens

Redirecting For Authorization

Once a client has been created, developers may use their client ID and secret to request an
authorization code and access token from your application. First, the consuming application should

API Authentication (Passport) 639

make a redirect request to your application’s /oauth/authorize route like so:

1 Route::get('/redirect', function () {

2 $query = http_build_query([

3 'client_id' => 'client-id',

4 'redirect_uri' => 'http://example.com/callback',

5 'response_type' => 'code',

6 'scope' => '',

7]);

8

9 return redirect('http://your-app.com/oauth/authorize?'.$query);

10 });

{tip} Remember, the /oauth/authorize route is already defined by the Passport::routes
method. You do not need to manually define this route.

Approving The Request

When receiving authorization requests, Passport will automatically display a template to the user
allowing them to approve or deny the authorization request. If they approve the request, they
will be redirected back to the redirect_uri that was specified by the consuming application. The
redirect_uri must match the redirect URL that was specified when the client was created.

If you would like to customize the authorization approval screen, you may publish Passport’s
views using the vendor:publish Artisan command. The published views will be placed in re-

sources/views/vendor/passport:

1 php artisan vendor:publish --tag=passport-views

Converting Authorization Codes To Access Tokens

If the user approves the authorization request, they will be redirected back to the consuming
application. The consumer should then issue a POST request to your application to request an access
token. The request should include the authorization code that was issued by when the user approved
the authorization request. In this example, we’ll use the Guzzle HTTP library to make the POST

request:

API Authentication (Passport) 640

1 Route::get('/callback', function (Request $request) {

2 $http = new GuzzleHttp\Client;

3

4 $response = $http->post('http://your-app.com/oauth/token', [

5 'form_params' => [

6 'grant_type' => 'authorization_code',

7 'client_id' => 'client-id',

8 'client_secret' => 'client-secret',

9 'redirect_uri' => 'http://example.com/callback',

10 'code' => $request->code,

11],

12]);

13

14 return json_decode((string) $response->getBody(), true);

15 });

This /oauth/token route will return a JSON response containing access_token, refresh_token, and
expires_in attributes. The expires_in attribute contains the number of seconds until the access
token expires.

{tip} Like the /oauth/authorize route, the /oauth/token route is defined for you by the
Passport::routes method. There is no need to manually define this route.

Refreshing Tokens

If your application issues short-lived access tokens, users will need to refresh their access tokens via
the refresh token that was provided to them when the access token was issued. In this example, we’ll
use the Guzzle HTTP library to refresh the token:

1 $http = new GuzzleHttp\Client;

2

3 $response = $http->post('http://your-app.com/oauth/token', [

4 'form_params' => [

5 'grant_type' => 'refresh_token',

6 'refresh_token' => 'the-refresh-token',

7 'client_id' => 'client-id',

8 'client_secret' => 'client-secret',

9 'scope' => '',

10],

11]);

12

API Authentication (Passport) 641

13 return json_decode((string) $response->getBody(), true);

This /oauth/token route will return a JSON response containing access_token, refresh_token, and
expires_in attributes. The expires_in attribute contains the number of seconds until the access
token expires.

Password Grant Tokens

The OAuth2 password grant allows your other first-party clients, such as a mobile application, to
obtain an access token using an e-mail address / username and password. This allows you to issue
access tokens securely to your first-party clients without requiring your users to go through the
entire OAuth2 authorization code redirect flow.

Creating A Password Grant Client

Before your application can issue tokens via the password grant, you will need to create a password
grant client. You may do this using the passport:client command with the --password option. If
you have already run the passport:install command, you do not need to run this command:

1 php artisan passport:client --password

Requesting Tokens

Once you have created a password grant client, you may request an access token by issuing a POST
request to the /oauth/token route with the user’s email address and password. Remember, this route
is already registered by the Passport::routes method so there is no need to define it manually. If
the request is successful, you will receive an access_token and refresh_token in the JSON response
from the server:

1 $http = new GuzzleHttp\Client;

2

3 $response = $http->post('http://your-app.com/oauth/token', [

4 'form_params' => [

5 'grant_type' => 'password',

6 'client_id' => 'client-id',

7 'client_secret' => 'client-secret',

8 'username' => 'taylor@laravel.com',

API Authentication (Passport) 642

9 'password' => 'my-password',

10 'scope' => '',

11],

12]);

13

14 return json_decode((string) $response->getBody(), true);

{tip} Remember, access tokens are long-lived by default. However, you are free to
configure your maximum access token lifetime if needed.

Requesting All Scopes

When using the password grant, you may wish to authorize the token for all of the scopes supported
by your application. You can do this by requesting the * scope. If you request the * scope, the can
method on the token instance will always return true. This scope may only be assigned to a token
that is issued using the password grant:

1 $response = $http->post('http://your-app.com/oauth/token', [

2 'form_params' => [

3 'grant_type' => 'password',

4 'client_id' => 'client-id',

5 'client_secret' => 'client-secret',

6 'username' => 'taylor@laravel.com',

7 'password' => 'my-password',

8 'scope' => '*',

9],

10]);

Implicit Grant Tokens

The implicit grant is similar to the authorization code grant; however, the token is returned to the
client without exchanging an authorization code. This grant is most commonly used for JavaScript
or mobile applications where the client credentials can’t be securely stored. To enable the grant, call
the enableImplicitGrant method in your AuthServiceProvider:

API Authentication (Passport) 643

1 /**

2 * Register any authentication / authorization services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->registerPolicies();

9

10 Passport::routes();

11

12 Passport::enableImplicitGrant();

13 }

Once a grant has been enabled, developers may use their client ID to request an access token from
your application. The consuming application should make a redirect request to your application’s
/oauth/authorize route like so:

1 Route::get('/redirect', function () {

2 $query = http_build_query([

3 'client_id' => 'client-id',

4 'redirect_uri' => 'http://example.com/callback',

5 'response_type' => 'token',

6 'scope' => '',

7]);

8

9 return redirect('http://your-app.com/oauth/authorize?'.$query);

10 });

{tip} Remember, the /oauth/authorize route is already defined by the Passport::routes
method. You do not need to manually define this route.

Personal Access Tokens

Sometimes, your users may want to issue access tokens to themselves without going through the
typical authorization code redirect flow. Allowing users to issue tokens to themselves via your
application’s UI can be useful for allowing users to experiment with your API or may serve as a
simpler approach to issuing access tokens in general.

API Authentication (Passport) 644

{note} Personal access tokens are always long-lived. Their lifetime is not modified when
using the tokensExpireIn or refreshTokensExpireIn methods.

Creating A Personal Access Client

Before your application can issue personal access tokens, you will need to create a personal access
client. You may do this using the passport:client command with the --personal option. If you
have already run the passport:install command, you do not need to run this command:

1 php artisan passport:client --personal

Managing Personal Access Tokens

Once you have created a personal access client, you may issue tokens for a given user using the
createTokenmethod on the Usermodel instance. The createTokenmethod accepts the name of the
token as its first argument and an optional array of scopes as its second argument:

1 $user = App\User::find(1);

2

3 // Creating a token without scopes...

4 $token = $user->createToken('Token Name')->accessToken;

5

6 // Creating a token with scopes...

7 $token = $user->createToken('My Token', ['place-orders'])->accessToken;

JSON API

Passport also includes a JSON API for managing personal access tokens. You may pair this with
your own frontend to offer your users a dashboard for managing personal access tokens. Below,
we’ll review all of the API endpoints for managing personal access tokens. For convenience, we’ll
use Vue²⁶⁷ to demonstrate making HTTP requests to the endpoints.

{tip} If you don’t want to implement the personal access token frontend yourself, you can
use the frontend quickstart to have a fully functional frontend in a matter of minutes.

²⁶⁷https://vuejs.org

https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 645

GET /oauth/scopes

This route returns all of the scopes defined for your application. You may use this route to list the
scopes a user may assign to a personal access token:

1 this.$http.get('/oauth/scopes')

2 .then(response => {

3 console.log(response.data);

4 });

GET /oauth/personal-access-tokens

This route returns all of the personal access tokens that the authenticated user has created. This is
primarily useful for listing all of the user’s token so that they may edit or delete them:

1 this.$http.get('/oauth/personal-access-tokens')

2 .then(response => {

3 console.log(response.data);

4 });

POST /oauth/personal-access-tokens

This route creates new personal access tokens. It requires two pieces of data: the token’s name and
the scopes that should be assigned to the token:

1 const data = {

2 name: 'Token Name',

3 scopes: []

4 };

5

6 this.$http.post('/oauth/personal-access-tokens', data)

7 .then(response => {

8 console.log(response.data.accessToken);

9 })

10 .catch (response => {

11 // List errors on response...

API Authentication (Passport) 646

12 });

DELETE /oauth/personal-access-tokens/{token-id}

This route may be used to delete personal access tokens:

1 this.$http.delete('/oauth/personal-access-tokens/' + tokenId);

Protecting Routes

Via Middleware

Passport includes an authentication guard that will validate access tokens on incoming requests.
Once you have configured the api guard to use the passport driver, you only need to specify the
auth:api middleware on any routes that require a valid access token:

1 Route::get('/user', function () {

2 //

3 })->middleware('auth:api');

Passing The Access Token

When calling routes that are protected by Passport, your application’s API consumers should specify
their access token as a Bearer token in the Authorization header of their request. For example, when
using the Guzzle HTTP library:

1 $response = $client->request('GET', '/api/user', [

2 'headers' => [

3 'Accept' => 'application/json',

4 'Authorization' => 'Bearer '.$accessToken,

5],

6]);

API Authentication (Passport) 647

Token Scopes

Defining Scopes

Scopes allow your API clients to request a specific set of permissions when requesting authorization
to access an account. For example, if you are building an e-commerce application, not all API
consumers will need the ability to place orders. Instead, youmay allow the consumers to only request
authorization to access order shipment statuses. In other words, scopes allow your application’s users
to limit the actions a third-party application can perform on their behalf.

You may define your API’s scopes using the Passport::tokensCan method in the boot method
of your AuthServiceProvider. The tokensCan method accepts an array of scope names and scope
descriptions. The scope description may be anything you wish and will be displayed to users on the
authorization approval screen:

1 use Laravel\Passport\Passport;

2

3 Passport::tokensCan([

4 'place-orders' => 'Place orders',

5 'check-status' => 'Check order status',

6]);

Assigning Scopes To Tokens

When Requesting Authorization Codes

When requesting an access token using the authorization code grant, consumers should specify their
desired scopes as the scope query string parameter. The scope parameter should be a space-delimited
list of scopes:

1 Route::get('/redirect', function () {

2 $query = http_build_query([

3 'client_id' => 'client-id',

4 'redirect_uri' => 'http://example.com/callback',

5 'response_type' => 'code',

6 'scope' => 'place-orders check-status',

API Authentication (Passport) 648

7]);

8

9 return redirect('http://your-app.com/oauth/authorize?'.$query);

10 });

When Issuing Personal Access Tokens

If you are issuing personal access tokens using the Usermodel’s createTokenmethod, you may pass
the array of desired scopes as the second argument to the method:

1 $token = $user->createToken('My Token', ['place-orders'])->accessToken;

Checking Scopes

Passport includes two middleware that may be used to verify that an incoming request is authenti-
cated with a token that has been granted a given scope. To get started, add the following middleware
to the $routeMiddleware property of your app/Http/Kernel.php file:

1 'scopes' => \Laravel\Passport\Http\Middleware\CheckScopes::class,

2 'scope' => \Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

Check For All Scopes

The scopes middleware may be assigned to a route to verify that the incoming request’s access
token has all of the listed scopes:

1 Route::get('/orders', function () {

2 // Access token has both "check-status" and "place-orders" scopes...

3 })->middleware('scopes:check-status,place-orders');

API Authentication (Passport) 649

Check For Any Scopes

The scopemiddleware may be assigned to a route to verify that the incoming request’s access token
has at least one of the listed scopes:

1 Route::get('/orders', function () {

2 // Access token has either "check-status" or "place-orders" scope...

3 })->middleware('scope:check-status,place-orders');

Checking Scopes On A Token Instance

Once an access token authenticated request has entered your application, you may still check if the
token has a given scope using the tokenCan method on the authenticated User instance:

1 use Illuminate\Http\Request;

2

3 Route::get('/orders', function (Request $request) {

4 if ($request->user()->tokenCan('place-orders')) {

5 //

6 }

7 });

Consuming Your API With JavaScript

When building an API, it can be extremely useful to be able to consume your own API from your
JavaScript application. This approach to API development allows your own application to consume
the same API that you are sharing with the world. The same API may be consumed by your web
application, mobile applications, third-party applications, and any SDKs that you may publish on
various package managers.

Typically, if you want to consume your API from your JavaScript application, you would need to
manually send an access token to the application and pass it with each request to your application.
However, Passport includes a middleware that can handle this for you. All you need to do is add the
CreateFreshApiToken middleware to your web middleware group:

API Authentication (Passport) 650

1 'web' => [

2 // Other middleware...

3 \Laravel\Passport\Http\Middleware\CreateFreshApiToken::class,

4],

This Passport middleware will attach a laravel_token cookie to your outgoing responses. This
cookie contains an encrypted JWT that Passport will use to authenticate API requests from your
JavaScript application. Now, you may make requests to your application’s API without explicitly
passing an access token:

1 this.$http.get('/user')

2 .then(response => {

3 console.log(response.data);

4 });

When using this method of authentication, you will need to send the CSRF token with every request
via the X-CSRF-TOKEN header. Laravel will automatically send this header if you are using the default
Vue²⁶⁸ configuration that is included with the framework:

1 Vue.http.interceptors.push((request, next) => {

2 request.headers.set('X-CSRF-TOKEN', Laravel.csrfToken);

3

4 next();

5 });

{note} If you are using a different JavaScript framework, you should make sure it is
configured to send this header with every outgoing request.

Events

Passport raises events when issuing access tokens and refresh tokens. You may use these events to
prune or revoke other access tokens in your database. You may attach listeners to these events in
your application’s EventServiceProvider:

²⁶⁸https://vuejs.org

https://vuejs.org/
https://vuejs.org/

API Authentication (Passport) 651

1 /**

2 * The event listener mappings for the application.

3 *

4 * @var array

5 */

6 protected $listen = [

7 A> 'Laravel\Passport\Events\AccessTokenCreated' => [

8 A> 'App\Listeners\RevokeOldTokens',

9 A>],

10 A>

11 A> 'Laravel\Passport\Events\RefreshTokenCreated' => [

12 A> 'App\Listeners\PruneOldTokens',

13 A>],

14

15];

Laravel Scout
• Introduction
• Installation A> - Queueing A> - Driver Prerequisites
• Configuration A> - Configuring Model Indexes A> - Configuring Searchable Data
• Indexing A> - Batch Import A> - Adding Records A> - Updating Records A> - Removing
Records A> - Pausing Indexing

• Searching A> - Where Clauses A> - Pagination
• Custom Engines

Introduction

Laravel Scout provides a simple, driver based solution for adding full-text search to your Eloquent
models. Using model observers, Scout will automatically keep your search indexes in sync with your
Eloquent records.

Currently, Scout ships with an Algolia²⁶⁹ driver; however, writing custom drivers is simple and you
are free to extend Scout with your own search implementations.

Installation

First, install the Scout via the Composer package manager:

1 composer require laravel/scout

Next, you should add the ScoutServiceProvider to the providers array of your config/app.php
configuration file:

1 Laravel\Scout\ScoutServiceProvider::class,

After registering the Scout service provider, you should publish the Scout configuration using the
vendor:publish Artisan command. This command will publish the scout.php configuration file to
your config directory:

²⁶⁹https://www.algolia.com/

https://www.algolia.com/
https://www.algolia.com/

Laravel Scout 653

1 php artisan vendor:publish --provider="Laravel\Scout\ScoutServiceProvider"

Finally, add the Laravel\Scout\Searchable trait to the model you would like to make searchable.
This trait will register a model observer to keep the model in sync with your search driver:

1 <?php

2

3 namespace App;

4

5 use Laravel\Scout\Searchable;

6 use Illuminate\Database\Eloquent\Model;

7

8 class Post extends Model

9 {

10 use Searchable;

11 }

Queueing

While not strictly required to use Scout, you should strongly consider configuring a queue driver
before using the library. Running a queue worker will allow Scout to queue all operations that sync
your model information to your search indexes, providing much better response times for your
application’s web interface.

Once you have configured a queue driver, set the value of the queue option in your config/s-

cout.php configuration file to true:

1 'queue' => true,

Driver Prerequisites

Algolia

When using the Algolia driver, you should configure your Algolia id and secret credentials in your
config/scout.php configuration file. Once your credentials have been configured, you will also
need to install the Algolia PHP SDK via the Composer package manager:

Laravel Scout 654

1 composer require algolia/algoliasearch-client-php

Configuration

Configuring Model Indexes

Each Eloquent model is synced with a given search “index”, which contains all of the searchable
records for that model. In other words, you can think of each index like a MySQL table. By default,
each model will be persisted to an index matching the model’s typical “table” name. Typically, this
is the plural form of the model name; however, you are free to customize the model’s index by
overriding the searchableAs method on the model:

1 <?php

2

3 namespace App;

4

5 use Laravel\Scout\Searchable;

6 use Illuminate\Database\Eloquent\Model;

7

8 class Post extends Model

9 {

10 use Searchable;

11

12 /**

13 * Get the index name for the model.

14 *

15 * @return string

16 */

17 public function searchableAs()

18 {

19 return 'posts_index';

20 }

21 }

Configuring Searchable Data

By default, the entire toArray form of a given model will be persisted to its search index. If you
would like to customize the data that is synchronized to the search index, you may override the

Laravel Scout 655

toSearchableArray method on the model:

1 <?php

2

3 namespace App;

4

5 use Laravel\Scout\Searchable;

6 use Illuminate\Database\Eloquent\Model;

7

8 class Post extends Model

9 {

10 use Searchable;

11

12 /**

13 * Get the indexable data array for the model.

14 *

15 * @return array

16 */

17 public function toSearchableArray()

18 {

19 $array = $this->toArray();

20

21 // Customize array...

22

23 return $array;

24 }

25 }

Indexing

Batch Import

If you are installing Scout into an existing project, you may already have database records you need
to import into your search driver. Scout provides an import Artisan command that you may use to
import all of your existing records into your search indexes:

1 php artisan scout:import "App\Post"

Laravel Scout 656

Adding Records

Once you have added the Laravel\Scout\Searchable trait to a model, all you need to do is save
a model instance and it will automatically be added to your search index. If you have configured
Scout to use queues this operation will be performed in the background by your queue worker:

1 $order = new App\Order;

2

3 // ...

4

5 $order->save();

Adding Via Query

If you would like to add a collection of models to your search index via an Eloquent query, you
may chain the searchablemethod onto an Eloquent query. The searchablemethod will chunk the
results of the query and add the records to your search index. Again, if you have configured Scout
to use queues, all of the chunks will be added in the background by your queue workers:

1 // Adding via Eloquent query...

2 App\Order::where('price', '>', 100)->searchable();

3

4 // You may also add records via relationships...

5 $user->orders()->searchable();

6

7 // You may also add records via collections...

8 $orders->searchable();

The searchablemethod can be considered an “upsert” operation. In other words, if the model record
is already in your index, it will be updated. If it does not exist in the search index, it will be added
to the index.

Updating Records

To update a searchable model, you only need to update the model instance’s properties and save the
model to your database. Scout will automatically persist the changes to your search index:

Laravel Scout 657

1 $order = App\Order::find(1);

2

3 // Update the order...

4

5 $order->save();

You may also use the searchable method on an Eloquent query to update a collection of models. If
the models do not exist in your search index, they will be created:

1 // Updating via Eloquent query...

2 App\Order::where('price', '>', 100)->searchable();

3

4 // You may also update via relationships...

5 $user->orders()->searchable();

6

7 // You may also update via collections...

8 $orders->searchable();

Removing Records

To remove a record from your index, simply delete the model from the database. This form of
removal is even compatible with soft deleted models:

1 $order = App\Order::find(1);

2

3 $order->delete();

If you do not want to retrieve the model before deleting the record, you may use the unsearchable
method on an Eloquent query instance or collection:

1 // Removing via Eloquent query...

2 App\Order::where('price', '>', 100)->unsearchable();

3

4 // You may also remove via relationships...

5 $user->orders()->unsearchable();

Laravel Scout 658

6

7 // You may also remove via collections...

8 $orders->unsearchable();

Pausing Indexing

Sometimes you may need to perform a batch of Eloquent operations on a model without syncing
the model data to your search index. You may do this using the withoutSyncingToSearch method.
This method accepts a single callback which will be immediately executed. Any model operations
that occur within the callback will not be synced to the model’s index:

1 App\Order::withoutSyncingToSearch(function () {

2 // Perform model actions...

3 });

Searching

You may begin searching a model using the search method. The search method accepts a single
string that will be used to search your models. You should then chain the get method onto the
search query to retrieve the Eloquent models that match the given search query:

1 $orders = App\Order::search('Star Trek')->get();

Since Scout searches return a collection of Eloquent models, you may even return the results directly
from a route or controller and they will automatically be converted to JSON:

1 use Illuminate\Http\Request;

2

3 Route::get('/search', function (Request $request) {

4 return App\Order::search($request->search)->get();

5 });

Laravel Scout 659

Where Clauses

Scout allows you to add simple “where” clauses to your search queries. Currently, these clauses
only support basic numeric equality checks, and are primarily useful for scoping search queries by
a tenant ID. Since a search index is not a relational database, more advanced “where” clauses are
not currently supported:

1 $orders = App\Order::search('Star Trek')->where('user_id', 1)->get();

Pagination

In addition to retrieving a collection of models, you may paginate your search results using the
paginate method. This method will return a Paginator instance just as if you had paginated a
traditional Eloquent query:

1 $orders = App\Order::search('Star Trek')->paginate();

You may specify how many models to retrieve per page by passing the amount as the first argument
to the paginate method:

1 $orders = App\Order::search('Star Trek')->paginate(15);

Once you have retrieved the results, you may display the results and render the page links using
Blade just as if you had paginated a traditional Eloquent query:

1 <div class="container">

2 @foreach ($orders as $order)

3 {{ $order->price }}

4 @endforeach

5 </div>

6

7 {{ $orders->links() }}

Laravel Scout 660

Custom Engines

Writing The Engine

If one of the built-in Scout search engines doesn’t fit your needs, you may write your own custom
engine and register it with Scout. Your engine should extend the Laravel\Scout\Engines\Engine
abstract class. This abstract class contains five methods your custom engine must implement:

1 use Laravel\Scout\Builder;

2

3 abstract public function update($models);

4 abstract public function delete($models);

5 abstract public function search(Builder $builder);

6 abstract public function paginate(Builder $builder, $perPage, $page);

7 abstract public function map($results, $model);

Youmay find it helpful to review the implementations of thesemethods on the Laravel\Scout\Engines\AlgoliaEngine
class. This class will provide you with a good starting point for learning how to implement each of
these methods in your own engine.

Registering The Engine

Once you have written your custom engine, you may register it with Scout using the extendmethod
of the Scout engine manager. You should call the extend method from the boot method of your
AppServiceProvider or any other service provider used by your application. For example, if you
have written a MySqlSearchEngine, you may register it like so:

1 use Laravel\Scout\EngineManager;

2

3 /**

4 * Bootstrap any application services.

5 *

6 * @return void

7 */

8 public function boot()

9 {

10 resolve(EngineManager::class)->extend('mysql', function () {

11 return new MySqlSearchEngine;

12 });

Laravel Scout 661

13 }

Once your engine has been registered, you may specify it as your default Scout driver in your
config/scout.php configuration file:

1 'driver' => 'mysql',

Collections
• Introduction A> - Creating Collections
• Available Methods

Introduction

The Illuminate\Support\Collection class provides a fluent, convenient wrapper for working with
arrays of data. For example, check out the following code. We’ll use the collect helper to create
a new collection instance from the array, run the strtoupper function on each element, and then
remove all empty elements:

1 $collection = collect(['taylor', 'abigail', null])->map(function ($name) {

2 return strtoupper($name);

3 })

4 ->reject(function ($name) {

5 return empty($name);

6 });

As you can see, the Collection class allows you to chain its methods to perform fluent mapping and
reducing of the underlying array. In general, collections are immutable, meaning every Collection

method returns an entirely new Collection instance.

Creating Collections

As mentioned above, the collect helper returns a new Illuminate\Support\Collection instance
for the given array. So, creating a collection is as simple as:

1 $collection = collect([1, 2, 3]);

{tip} The results of Eloquent queries are always returned as Collection instances.

Collections 663

Available Methods

For the remainder of this documentation, we’ll discuss each method available on the Collection

class. Remember, all of these methods may be chained to fluently manipulating the underlying array.
Furthermore, almost every method returns a new Collection instance, allowing you to preserve the
original copy of the collection when necessary:

<style> A> #collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> #collection-method-list a { A> display: block; A> }

</style>

<div id=”collection-method-list” markdown=”1”>

all avg chunk collapse combine contains count diff diffKeys each every except filter first flatMap
flatten flip forget forPage get groupBy has implode intersect isEmpty keyBy keys last map map-
WithKeys max merge min only pipe pluck pop prepend pull push put random reduce reject reverse
search shift shuffle slice sort sortBy sortByDesc splice split sum take toArray toJson transform union
unique values where whereStrict whereIn whereInStrict zip

</div>

Method Listing

<style> A> #collection-method code { A> font-size: 14px; A> } A> A> #collection-method:not(.first-
collection-method) { A> margin-top: 50px; A> }

</style>

all() {#collection-method .first-collection-method}

The all method returns the underlying array represented by the collection:

1 collect([1, 2, 3])->all();

2

3 // [1, 2, 3]

avg() {#collection-method}

The avg method returns the average of all items in the collection:

Collections 664

1 collect([1, 2, 3, 4, 5])->avg();

2

3 // 3

If the collection contains nested arrays or objects, you should pass a key to use for determining
which values to calculate the average:

1 $collection = collect([

2 ['name' => 'JavaScript: The Good Parts', 'pages' => 176],

3 ['name' => 'JavaScript: The Definitive Guide', 'pages' => 1096],

4]);

5

6 $collection->avg('pages');

7

8 // 636

chunk() {#collection-method}

The chunk method breaks the collection into multiple, smaller collections of a given size:

1 $collection = collect([1, 2, 3, 4, 5, 6, 7]);

2

3 $chunks = $collection->chunk(4);

4

5 $chunks->toArray();

6

7 // [[1, 2, 3, 4], [5, 6, 7]]

This method is especially useful in views when working with a grid system such as Bootstrap²⁷⁰.
Imagine you have a collection of Eloquent models you want to display in a grid:

1 @foreach ($products->chunk(3) as $chunk)

2 <div class="row">

3 @foreach ($chunk as $product)

²⁷⁰https://getbootstrap.com/css/#grid

https://getbootstrap.com/css/#grid
https://getbootstrap.com/css/#grid

Collections 665

4 <div class="col-xs-4">{{ $product->name }}</div>

5 @endforeach

6 </div>

7 @endforeach

collapse() {#collection-method}

The collapse method collapses a collection of arrays into a single, flat collection:

1 $collection = collect([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);

2

3 $collapsed = $collection->collapse();

4

5 $collapsed->all();

6

7 // [1, 2, 3, 4, 5, 6, 7, 8, 9]

combine() {#collection-method}

The combine method combines the keys of the collection with the values of another array or
collection:

1 $collection = collect(['name', 'age']);

2

3 $combined = $collection->combine(['George', 29]);

4

5 $combined->all();

6

7 // ['name' => 'George', 'age' => 29]

contains() {#collection-method}

The contains method determines whether the collection contains a given item:

Collections 666

1 $collection = collect(['name' => 'Desk', 'price' => 100]);

2

3 $collection->contains('Desk');

4

5 // true

6

7 $collection->contains('New York');

8

9 // false

You may also pass a key / value pair to the containsmethod, which will determine if the given pair
exists in the collection:

1 $collection = collect([

2 ['product' => 'Desk', 'price' => 200],

3 ['product' => 'Chair', 'price' => 100],

4]);

5

6 $collection->contains('product', 'Bookcase');

7

8 // false

Finally, you may also pass a callback to the contains method to perform your own truth test:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->contains(function ($value, $key) {

4 return $value > 5;

5 });

6

7 // false

count() {#collection-method}

The count method returns the total number of items in the collection:

Collections 667

1 $collection = collect([1, 2, 3, 4]);

2

3 $collection->count();

4

5 // 4

diff() {#collection-method}

The diff method compares the collection against another collection or a plain PHP array based on
its values. This method will return the values in the original collection that are not present in the
given collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $diff = $collection->diff([2, 4, 6, 8]);

4

5 $diff->all();

6

7 // [1, 3, 5]

diffKeys() {#collection-method}

The diffKeysmethod compares the collection against another collection or a plain PHP array based
on its keys. This method will return the key / value pairs in the original collection that are not present
in the given collection:

1 $collection = collect([

2 'one' => 10,

3 'two' => 20,

4 'three' => 30,

5 'four' => 40,

6 'five' => 50,

7]);

8

9 $diff = $collection->diffKeys([

10 'two' => 2,

11 'four' => 4,

Collections 668

12 'six' => 6,

13 'eight' => 8,

14]);

15

16 $diff->all();

17

18 // ['one' => 10, 'three' => 30, 'five' => 50]

each() {#collection-method}

The each method iterates over the items in the collection and passes each item to a callback:

1 $collection = $collection->each(function ($item, $key) {

2 //

3 });

If you would like to stop iterating through the items, you may return false from your callback:

1 $collection = $collection->each(function ($item, $key) {

2 if (/* some condition */) {

3 return false;

4 }

5 });

every() {#collection-method}

The every method creates a new collection consisting of every n-th element:

1 $collection = collect(['a', 'b', 'c', 'd', 'e', 'f']);

2

3 $collection->every(4);

4

5 // ['a', 'e']

You may optionally pass an offset as the second argument:

Collections 669

1 $collection->every(4, 1);

2

3 // ['b', 'f']

except() {#collection-method}

The except method returns all items in the collection except for those with the specified keys:

1 $collection = collect(['product_id' => 1, 'price' => 100, 'discount' => false]);

2

3 $filtered = $collection->except(['price', 'discount']);

4

5 $filtered->all();

6

7 // ['product_id' => 1]

For the inverse of except, see the only method.

filter() {#collection-method}

The filtermethod filters the collection using the given callback, keeping only those items that pass
a given truth test:

1 $collection = collect([1, 2, 3, 4]);

2

3 $filtered = $collection->filter(function ($value, $key) {

4 return $value > 2;

5 });

6

7 $filtered->all();

8

9 // [3, 4]

If no callback is supplied, all entries of the collection that are equivalent to false will be removed:

Collections 670

1 $collection = collect([1, 2, 3, null, false, '', 0, []]);

2

3 $collection->filter()->all();

4

5 // [1, 2, 3]

For the inverse of filter, see the reject method.

first() {#collection-method}

The first method returns the first element in the collection that passes a given truth test:

1 collect([1, 2, 3, 4])->first(function ($value, $key) {

2 return $value > 2;

3 });

4

5 // 3

You may also call the first method with no arguments to get the first element in the collection. If
the collection is empty, null is returned:

1 collect([1, 2, 3, 4])->first();

2

3 // 1

flatMap() {#collection-method}

The flatMapmethod iterates through the collection and passes each value to the given callback. The
callback is free to modify the item and return it, thus forming a new collection of modified items.
Then, the array is flattened by a level:

1 $collection = collect([

2 ['name' => 'Sally'],

3 ['school' => 'Arkansas'],

4 ['age' => 28]

5]);

Collections 671

6

7 $flattened = $collection->flatMap(function ($values) {

8 return array_map('strtoupper', $values);

9 });

10

11 $flattened->all();

12

13 // ['name' => 'SALLY', 'school' => 'ARKANSAS', 'age' => '28'];

flatten() {#collection-method}

The flatten method flattens a multi-dimensional collection into a single dimension:

1 $collection = collect(['name' => 'taylor', 'languages' => ['php', 'javascript']]\

2);

3

4 $flattened = $collection->flatten();

5

6 $flattened->all();

7

8 // ['taylor', 'php', 'javascript'];

You may optionally pass the function a “depth” argument:

1 $collection = collect([

2 'Apple' => [

3 ['name' => 'iPhone 6S', 'brand' => 'Apple'],

4],

5 'Samsung' => [

6 ['name' => 'Galaxy S7', 'brand' => 'Samsung']

7],

8]);

9

10 $products = $collection->flatten(1);

11

12 $products->values()->all();

13

14 /*

Collections 672

15 [

16 ['name' => 'iPhone 6S', 'brand' => 'Apple'],

17 ['name' => 'Galaxy S7', 'brand' => 'Samsung'],

18]

19 */

In this example, calling flatten without providing the depth would have also flattened the nested
arrays, resulting in ['iPhone 6S', 'Apple', 'Galaxy S7', 'Samsung']. Providing a depth allows
you to restrict the levels of nested arrays that will be flattened.

flip() {#collection-method}

The flip method swaps the collection’s keys with their corresponding values:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $flipped = $collection->flip();

4

5 $flipped->all();

6

7 // ['taylor' => 'name', 'laravel' => 'framework']

forget() {#collection-method}

The forget method removes an item from the collection by its key:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $collection->forget('name');

4

5 $collection->all();

6

7 // ['framework' => 'laravel']

{note} Unlike most other collection methods, forget does not return a new modified
collection; it modifies the collection it is called on.

Collections 673

forPage() {#collection-method}

The forPagemethod returns a new collection containing the items that would be present on a given
page number. The method accepts the page number as its first argument and the number of items
to show per page as its second argument:

1 $collection = collect([1, 2, 3, 4, 5, 6, 7, 8, 9]);

2

3 $chunk = $collection->forPage(2, 3);

4

5 $chunk->all();

6

7 // [4, 5, 6]

get() {#collection-method}

The get method returns the item at a given key. If the key does not exist, null is returned:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $value = $collection->get('name');

4

5 // taylor

You may optionally pass a default value as the second argument:

1 $collection = collect(['name' => 'taylor', 'framework' => 'laravel']);

2

3 $value = $collection->get('foo', 'default-value');

4

5 // default-value

You may even pass a callback as the default value. The result of the callback will be returned if the
specified key does not exist:

Collections 674

1 $collection->get('email', function () {

2 return 'default-value';

3 });

4

5 // default-value

groupBy() {#collection-method}

The groupBy method groups the collection’s items by a given key:

1 $collection = collect([

2 ['account_id' => 'account-x10', 'product' => 'Chair'],

3 ['account_id' => 'account-x10', 'product' => 'Bookcase'],

4 ['account_id' => 'account-x11', 'product' => 'Desk'],

5]);

6

7 $grouped = $collection->groupBy('account_id');

8

9 $grouped->toArray();

10

11 /*

12 [

13 'account-x10' => [

14 ['account_id' => 'account-x10', 'product' => 'Chair'],

15 ['account_id' => 'account-x10', 'product' => 'Bookcase'],

16],

17 'account-x11' => [

18 ['account_id' => 'account-x11', 'product' => 'Desk'],

19],

20]

21 */

In addition to passing a string key, you may also pass a callback. The callback should return the
value you wish to key the group by:

1 $grouped = $collection->groupBy(function ($item, $key) {

2 return substr($item['account_id'], -3);

3 });

Collections 675

4

5 $grouped->toArray();

6

7 /*

8 [

9 'x10' => [

10 ['account_id' => 'account-x10', 'product' => 'Chair'],

11 ['account_id' => 'account-x10', 'product' => 'Bookcase'],

12],

13 'x11' => [

14 ['account_id' => 'account-x11', 'product' => 'Desk'],

15],

16]

17 */

has() {#collection-method}

The has method determines if a given key exists in the collection:

1 $collection = collect(['account_id' => 1, 'product' => 'Desk']);

2

3 $collection->has('product');

4

5 // true

implode() {#collection-method}

The implode method joins the items in a collection. Its arguments depend on the type of items in
the collection. If the collection contains arrays or objects, you should pass the key of the attributes
you wish to join, and the “glue” string you wish to place between the values:

1 $collection = collect([

2 ['account_id' => 1, 'product' => 'Desk'],

3 ['account_id' => 2, 'product' => 'Chair'],

4]);

5

6 $collection->implode('product', ', ');

7

Collections 676

8 // Desk, Chair

If the collection contains simple strings or numeric values, simply pass the “glue” as the only
argument to the method:

1 collect([1, 2, 3, 4, 5])->implode('-');

2

3 // '1-2-3-4-5'

intersect() {#collection-method}

The intersect method removes any values from the original collection that are not present in the
given array or collection. The resulting collection will preserve the original collection’s keys:

1 $collection = collect(['Desk', 'Sofa', 'Chair']);

2

3 $intersect = $collection->intersect(['Desk', 'Chair', 'Bookcase']);

4

5 $intersect->all();

6

7 // [0 => 'Desk', 2 => 'Chair']

isEmpty() {#collection-method}

The isEmpty method returns true if the collection is empty; otherwise, false is returned:

1 collect([])->isEmpty();

2

3 // true

keyBy() {#collection-method}

The keyBy method keys the collection by the given key. If multiple items have the same key, only
the last one will appear in the new collection:

Collections 677

1 $collection = collect([

2 ['product_id' => 'prod-100', 'name' => 'desk'],

3 ['product_id' => 'prod-200', 'name' => 'chair'],

4]);

5

6 $keyed = $collection->keyBy('product_id');

7

8 $keyed->all();

9

10 /*

11 [

12 'prod-100' => ['product_id' => 'prod-100', 'name' => 'Desk'],

13 'prod-200' => ['product_id' => 'prod-200', 'name' => 'Chair'],

14]

15 */

Youmay also pass a callback to themethod. The callback should return the value to key the collection
by:

1 $keyed = $collection->keyBy(function ($item) {

2 return strtoupper($item['product_id']);

3 });

4

5 $keyed->all();

6

7 /*

8 [

9 'PROD-100' => ['product_id' => 'prod-100', 'name' => 'Desk'],

10 'PROD-200' => ['product_id' => 'prod-200', 'name' => 'Chair'],

11]

12 */

keys() {#collection-method}

The keys method returns all of the collection’s keys:

1 $collection = collect([

2 'prod-100' => ['product_id' => 'prod-100', 'name' => 'Desk'],

Collections 678

3 'prod-200' => ['product_id' => 'prod-200', 'name' => 'Chair'],

4]);

5

6 $keys = $collection->keys();

7

8 $keys->all();

9

10 // ['prod-100', 'prod-200']

last() {#collection-method}

The last method returns the last element in the collection that passes a given truth test:

1 collect([1, 2, 3, 4])->last(function ($value, $key) {

2 return $value < 3;

3 });

4

5 // 2

You may also call the last method with no arguments to get the last element in the collection. If
the collection is empty, null is returned:

1 collect([1, 2, 3, 4])->last();

2

3 // 4

map() {#collection-method}

The map method iterates through the collection and passes each value to the given callback. The
callback is free to modify the item and return it, thus forming a new collection of modified items:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $multiplied = $collection->map(function ($item, $key) {

4 return $item * 2;

5 });

Collections 679

6

7 $multiplied->all();

8

9 // [2, 4, 6, 8, 10]

{note} Like most other collection methods, map returns a new collection instance; it does
not modify the collection it is called on. If you want to transform the original collection,
use the transform method.

mapWithKeys() {#collection-method}

The mapWithKeysmethod iterates through the collection and passes each value to the given callback.
The callback should return an associative array containing a single key / value pair:

1 $collection = collect([

2 [

3 'name' => 'John',

4 'department' => 'Sales',

5 'email' => 'john@example.com'

6],

7 [

8 'name' => 'Jane',

9 'department' => 'Marketing',

10 'email' => 'jane@example.com'

11]

12]);

13

14 $keyed = $collection->mapWithKeys(function ($item) {

15 return [$item['email'] => $item['name']];

16 });

17

18 $keyed->all();

19

20 /*

21 [

22 'john@example.com' => 'John',

23 'jane@example.com' => 'Jane',

24]

25 */

Collections 680

max() {#collection-method}

The max method returns the maximum value of a given key:

1 $max = collect([['foo' => 10], ['foo' => 20]])->max('foo');

2

3 // 20

4

5 $max = collect([1, 2, 3, 4, 5])->max();

6

7 // 5

merge() {#collection-method}

The merge method merges the given array into the original collection. If a string key in the given
array matches a string key in the original collection, the given array’s value will overwrite the value
in the original collection:

1 $collection = collect(['product_id' => 1, 'price' => 100]);

2

3 $merged = $collection->merge(['price' => 200, 'discount' => false]);

4

5 $merged->all();

6

7 // ['product_id' => 1, 'price' => 200, 'discount' => false]

If the given array’s keys are numeric, the values will be appended to the end of the collection:

1 $collection = collect(['Desk', 'Chair']);

2

3 $merged = $collection->merge(['Bookcase', 'Door']);

4

5 $merged->all();

6

7 // ['Desk', 'Chair', 'Bookcase', 'Door']

Collections 681

min() {#collection-method}

The min method returns the minimum value of a given key:

1 $min = collect([['foo' => 10], ['foo' => 20]])->min('foo');

2

3 // 10

4

5 $min = collect([1, 2, 3, 4, 5])->min();

6

7 // 1

only() {#collection-method}

The only method returns the items in the collection with the specified keys:

1 $collection = collect(['product_id' => 1, 'name' => 'Desk', 'price' => 100, 'dis\

2 count' => false]);

3

4 $filtered = $collection->only(['product_id', 'name']);

5

6 $filtered->all();

7

8 // ['product_id' => 1, 'name' => 'Desk']

For the inverse of only, see the except method.

pipe() {#collection-method}

The pipe method passes the collection to the given callback and returns the result:

1 $collection = collect([1, 2, 3]);

2

3 $piped = $collection->pipe(function ($collection) {

4 return $collection->sum();

5 });

6

Collections 682

7 // 6

pluck() {#collection-method}

The pluck method retrieves all of the values for a given key:

1 $collection = collect([

2 ['product_id' => 'prod-100', 'name' => 'Desk'],

3 ['product_id' => 'prod-200', 'name' => 'Chair'],

4]);

5

6 $plucked = $collection->pluck('name');

7

8 $plucked->all();

9

10 // ['Desk', 'Chair']

You may also specify how you wish the resulting collection to be keyed:

1 $plucked = $collection->pluck('name', 'product_id');

2

3 $plucked->all();

4

5 // ['prod-100' => 'Desk', 'prod-200' => 'Chair']

pop() {#collection-method}

The pop method removes and returns the last item from the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->pop();

4

5 // 5

6

7 $collection->all();

Collections 683

8

9 // [1, 2, 3, 4]

prepend() {#collection-method}

The prepend method adds an item to the beginning of the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->prepend(0);

4

5 $collection->all();

6

7 // [0, 1, 2, 3, 4, 5]

You may also pass a second argument to set the key of the prepended item:

1 $collection = collect(['one' => 1, 'two', => 2]);

2

3 $collection->prepend(0, 'zero');

4

5 $collection->all();

6

7 // ['zero' => 0, 'one' => 1, 'two', => 2]

pull() {#collection-method}

The pull method removes and returns an item from the collection by its key:

1 $collection = collect(['product_id' => 'prod-100', 'name' => 'Desk']);

2

3 $collection->pull('name');

4

5 // 'Desk'

6

7 $collection->all();

Collections 684

8

9 // ['product_id' => 'prod-100']

push() {#collection-method}

The push method appends an item to the end of the collection:

1 $collection = collect([1, 2, 3, 4]);

2

3 $collection->push(5);

4

5 $collection->all();

6

7 // [1, 2, 3, 4, 5]

put() {#collection-method}

The put method sets the given key and value in the collection:

1 $collection = collect(['product_id' => 1, 'name' => 'Desk']);

2

3 $collection->put('price', 100);

4

5 $collection->all();

6

7 // ['product_id' => 1, 'name' => 'Desk', 'price' => 100]

random() {#collection-method}

The random method returns a random item from the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->random();

4

Collections 685

5 // 4 - (retrieved randomly)

Youmay optionally pass an integer to random to specify howmany items youwould like to randomly
retrieve. If that integer is more than 1, a collection of items is returned:

1 $random = $collection->random(3);

2

3 $random->all();

4

5 // [2, 4, 5] - (retrieved randomly)

reduce() {#collection-method}

The reduce method reduces the collection to a single value, passing the result of each iteration into
the subsequent iteration:

1 $collection = collect([1, 2, 3]);

2

3 $total = $collection->reduce(function ($carry, $item) {

4 return $carry + $item;

5 });

6

7 // 6

The value for $carry on the first iteration is null; however, you may specify its initial value by
passing a second argument to reduce:

1 $collection->reduce(function ($carry, $item) {

2 return $carry + $item;

3 }, 4);

4

5 // 10

Collections 686

reject() {#collection-method}

The reject method filters the collection using the given callback. The callback should return true

if the item should be removed from the resulting collection:

1 $collection = collect([1, 2, 3, 4]);

2

3 $filtered = $collection->reject(function ($value, $key) {

4 return $value > 2;

5 });

6

7 $filtered->all();

8

9 // [1, 2]

For the inverse of the reject method, see the filter method.

reverse() {#collection-method}

The reverse method reverses the order of the collection’s items:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $reversed = $collection->reverse();

4

5 $reversed->all();

6

7 // [5, 4, 3, 2, 1]

search() {#collection-method}

The search method searches the collection for the given value and returns its key if found. If the
item is not found, false is returned.

1 $collection = collect([2, 4, 6, 8]);

2

3 $collection->search(4);

Collections 687

4

5 // 1

The search is done using a “loose” comparison, meaning a string with an integer value will be
considered equal to an integer of the same value. To use strict comparison, pass true as the second
argument to the method:

1 $collection->search('4', true);

2

3 // false

Alternatively, you may pass in your own callback to search for the first item that passes your truth
test:

1 $collection->search(function ($item, $key) {

2 return $item > 5;

3 });

4

5 // 2

shift() {#collection-method}

The shift method removes and returns the first item from the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->shift();

4

5 // 1

6

7 $collection->all();

8

9 // [2, 3, 4, 5]

Collections 688

shuffle() {#collection-method}

The shuffle method randomly shuffles the items in the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $shuffled = $collection->shuffle();

4

5 $shuffled->all();

6

7 // [3, 2, 5, 1, 4] // (generated randomly)

slice() {#collection-method}

The slice method returns a slice of the collection starting at the given index:

1 $collection = collect([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

2

3 $slice = $collection->slice(4);

4

5 $slice->all();

6

7 // [5, 6, 7, 8, 9, 10]

If you would like to limit the size of the returned slice, pass the desired size as the second argument
to the method:

1 $slice = $collection->slice(4, 2);

2

3 $slice->all();

4

5 // [5, 6]

The returned slice will preserve keys by default. If you do not wish to preserve the original keys,
you can use the values method to reindex them.

Collections 689

sort() {#collection-method}

The sort method sorts the collection. The sorted collection keeps the original array keys, so in this
example we’ll use the values method to reset the keys to consecutively numbered indexes:

1 $collection = collect([5, 3, 1, 2, 4]);

2

3 $sorted = $collection->sort();

4

5 $sorted->values()->all();

6

7 // [1, 2, 3, 4, 5]

If your sorting needs are more advanced, you may pass a callback to sortwith your own algorithm.
Refer to the PHP documentation on usort²⁷¹, which is what the collection’s sortmethod calls under
the hood.

{tip} If you need to sort a collection of nested arrays or objects, see the sortBy and
sortByDesc methods.

sortBy() {#collection-method}

The sortBy method sorts the collection by the given key. The sorted collection keeps the original
array keys, so in this example we’ll use the values method to reset the keys to consecutively
numbered indexes:

1 $collection = collect([

2 ['name' => 'Desk', 'price' => 200],

3 ['name' => 'Chair', 'price' => 100],

4 ['name' => 'Bookcase', 'price' => 150],

5]);

6

7 $sorted = $collection->sortBy('price');

8

9 $sorted->values()->all();

10

11 /*

12 [

13 ['name' => 'Chair', 'price' => 100],

14 ['name' => 'Bookcase', 'price' => 150],

²⁷¹https://secure.php.net/manual/en/function.usort.php#refsect1-function.usort-parameters

https://secure.php.net/manual/en/function.usort.php#refsect1-function.usort-parameters
https://secure.php.net/manual/en/function.usort.php#refsect1-function.usort-parameters

Collections 690

15 ['name' => 'Desk', 'price' => 200],

16]

17 */

You can also pass your own callback to determine how to sort the collection values:

1 $collection = collect([

2 ['name' => 'Desk', 'colors' => ['Black', 'Mahogany']],

3 ['name' => 'Chair', 'colors' => ['Black']],

4 ['name' => 'Bookcase', 'colors' => ['Red', 'Beige', 'Brown']],

5]);

6

7 $sorted = $collection->sortBy(function ($product, $key) {

8 return count($product['colors']);

9 });

10

11 $sorted->values()->all();

12

13 /*

14 [

15 ['name' => 'Chair', 'colors' => ['Black']],

16 ['name' => 'Desk', 'colors' => ['Black', 'Mahogany']],

17 ['name' => 'Bookcase', 'colors' => ['Red', 'Beige', 'Brown']],

18]

19 */

sortByDesc() {#collection-method}

This method has the same signature as the sortBymethod, but will sort the collection in the opposite
order.

splice() {#collection-method}

The splice method removes and returns a slice of items starting at the specified index:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $chunk = $collection->splice(2);

4

Collections 691

5 $chunk->all();

6

7 // [3, 4, 5]

8

9 $collection->all();

10

11 // [1, 2]

You may pass a second argument to limit the size of the resulting chunk:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $chunk = $collection->splice(2, 1);

4

5 $chunk->all();

6

7 // [3]

8

9 $collection->all();

10

11 // [1, 2, 4, 5]

In addition, you can pass a third argument containing the new items to replace the items removed
from the collection:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $chunk = $collection->splice(2, 1, [10, 11]);

4

5 $chunk->all();

6

7 // [3]

8

9 $collection->all();

10

11 // [1, 2, 10, 11, 4, 5]

Collections 692

split() {#collection-method}

The split method breaks a collection into the given number of groups:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $groups = $collection->split(3);

4

5 $groups->toArray();

6

7 // [[1, 2], [3, 4], [5]]

sum() {#collection-method}

The sum method returns the sum of all items in the collection:

1 collect([1, 2, 3, 4, 5])->sum();

2

3 // 15

If the collection contains nested arrays or objects, you should pass a key to use for determining
which values to sum:

1 $collection = collect([

2 ['name' => 'JavaScript: The Good Parts', 'pages' => 176],

3 ['name' => 'JavaScript: The Definitive Guide', 'pages' => 1096],

4]);

5

6 $collection->sum('pages');

7

8 // 1272

In addition, you may pass your own callback to determine which values of the collection to sum:

1 $collection = collect([

2 ['name' => 'Chair', 'colors' => ['Black']],

Collections 693

3 ['name' => 'Desk', 'colors' => ['Black', 'Mahogany']],

4 ['name' => 'Bookcase', 'colors' => ['Red', 'Beige', 'Brown']],

5]);

6

7 $collection->sum(function ($product) {

8 return count($product['colors']);

9 });

10

11 // 6

take() {#collection-method}

The take method returns a new collection with the specified number of items:

1 $collection = collect([0, 1, 2, 3, 4, 5]);

2

3 $chunk = $collection->take(3);

4

5 $chunk->all();

6

7 // [0, 1, 2]

You may also pass a negative integer to take the specified amount of items from the end of the
collection:

1 $collection = collect([0, 1, 2, 3, 4, 5]);

2

3 $chunk = $collection->take(-2);

4

5 $chunk->all();

6

7 // [4, 5]

toArray() {#collection-method}

The toArray method converts the collection into a plain PHP array. If the collection’s values are
Eloquent models, the models will also be converted to arrays:

Collections 694

1 $collection = collect(['name' => 'Desk', 'price' => 200]);

2

3 $collection->toArray();

4

5 /*

6 [

7 ['name' => 'Desk', 'price' => 200],

8]

9 */

{note} toArray also converts all of the collection’s nested objects to an array. If you want
to get the raw underlying array, use the all method instead.

toJson() {#collection-method}

The toJson method converts the collection into JSON:

1 $collection = collect(['name' => 'Desk', 'price' => 200]);

2

3 $collection->toJson();

4

5 // '{"name":"Desk", "price":200}'

transform() {#collection-method}

The transformmethod iterates over the collection and calls the given callback with each item in the
collection. The items in the collection will be replaced by the values returned by the callback:

1 $collection = collect([1, 2, 3, 4, 5]);

2

3 $collection->transform(function ($item, $key) {

4 return $item * 2;

5 });

6

7 $collection->all();

8

Collections 695

9 // [2, 4, 6, 8, 10]

{note} Unlike most other collection methods, transformmodifies the collection itself. If
you wish to create a new collection instead, use the map method.

union() {#collection-method}

The union method adds the given array to the collection. If the given array contains keys that are
already in the original collection, the original collection’s values will be preferred:

1 $collection = collect([1 => ['a'], 2 => ['b']]);

2

3 $union = $collection->union([3 => ['c'], 1 => ['b']]);

4

5 $union->all();

6

7 // [1 => ['a'], 2 => ['b'], [3 => ['c']]

unique() {#collection-method}

The uniquemethod returns all of the unique items in the collection. The returned collection keeps the
original array keys, so in this example we’ll use the valuesmethod to reset the keys to consecutively
numbered indexes:

1 $collection = collect([1, 1, 2, 2, 3, 4, 2]);

2

3 $unique = $collection->unique();

4

5 $unique->values()->all();

6

7 // [1, 2, 3, 4]

When dealing with nested arrays or objects, you may specify the key used to determine uniqueness:

Collections 696

1 $collection = collect([

2 ['name' => 'iPhone 6', 'brand' => 'Apple', 'type' => 'phone'],

3 ['name' => 'iPhone 5', 'brand' => 'Apple', 'type' => 'phone'],

4 ['name' => 'Apple Watch', 'brand' => 'Apple', 'type' => 'watch'],

5 ['name' => 'Galaxy S6', 'brand' => 'Samsung', 'type' => 'phone'],

6 ['name' => 'Galaxy Gear', 'brand' => 'Samsung', 'type' => 'watch'],

7]);

8

9 $unique = $collection->unique('brand');

10

11 $unique->values()->all();

12

13 /*

14 [

15 ['name' => 'iPhone 6', 'brand' => 'Apple', 'type' => 'phone'],

16 ['name' => 'Galaxy S6', 'brand' => 'Samsung', 'type' => 'phone'],

17]

18 */

You may also pass your own callback to determine item uniqueness:

1 $unique = $collection->unique(function ($item) {

2 return $item['brand'].$item['type'];

3 });

4

5 $unique->values()->all();

6

7 /*

8 [

9 ['name' => 'iPhone 6', 'brand' => 'Apple', 'type' => 'phone'],

10 ['name' => 'Apple Watch', 'brand' => 'Apple', 'type' => 'watch'],

11 ['name' => 'Galaxy S6', 'brand' => 'Samsung', 'type' => 'phone'],

12 ['name' => 'Galaxy Gear', 'brand' => 'Samsung', 'type' => 'watch'],

13]

14 */

values() {#collection-method}

The values method returns a new collection with the keys reset to consecutive integers:

Collections 697

1 $collection = collect([

2 10 => ['product' => 'Desk', 'price' => 200],

3 11 => ['product' => 'Desk', 'price' => 200]

4]);

5

6 $values = $collection->values();

7

8 $values->all();

9

10 /*

11 [

12 0 => ['product' => 'Desk', 'price' => 200],

13 1 => ['product' => 'Desk', 'price' => 200],

14]

15 */

where() {#collection-method}

The where method filters the collection by a given key / value pair:

1 $collection = collect([

2 ['product' => 'Desk', 'price' => 200],

3 ['product' => 'Chair', 'price' => 100],

4 ['product' => 'Bookcase', 'price' => 150],

5 ['product' => 'Door', 'price' => 100],

6]);

7

8 $filtered = $collection->where('price', 100);

9

10 $filtered->all();

11

12 /*

13 [

14 ['product' => 'Chair', 'price' => 100],

15 ['product' => 'Door', 'price' => 100],

16]

17 */

The wheremethod uses loose comparisons when checking item values. Use the whereStrictmethod
to filter using “strict” comparisons.

Collections 698

whereStrict() {#collection-method}

This method has the same signature as the where method; however, all values are compared using
“strict” comparisons.

whereIn() {#collection-method}

The whereIn method filters the collection by a given key / value contained within the given array.

1 $collection = collect([

2 ['product' => 'Desk', 'price' => 200],

3 ['product' => 'Chair', 'price' => 100],

4 ['product' => 'Bookcase', 'price' => 150],

5 ['product' => 'Door', 'price' => 100],

6]);

7

8 $filtered = $collection->whereIn('price', [150, 200]);

9

10 $filtered->all();

11

12 /*

13 [

14 ['product' => 'Bookcase', 'price' => 150],

15 ['product' => 'Desk', 'price' => 200],

16]

17 */

The whereIn method uses “loose” comparisons when checking item values. Use the whereInStrict
method to filter using strict comparisons.

whereInStrict() {#collection-method}

This method has the same signature as the whereInmethod; however, all values are compared using
strict comparisons.

zip() {#collection-method}

The zip method merges together the values of the given array with the values of the original
collection at the corresponding index:

Collections 699

1 $collection = collect(['Chair', 'Desk']);

2

3 $zipped = $collection->zip([100, 200]);

4

5 $zipped->all();

6

7 // [['Chair', 100], ['Desk', 200]]

Helper Functions
• Introduction
• Available Methods

Introduction

Laravel includes a variety of global “helper” PHP functions. Many of these functions are used by
the framework itself; however, you are free to use them in your own applications if you find them
convenient.

Available Methods

<style> A> .collection-method-list > p { A> column-count: 3; -moz-column-count: 3; -webkit-
column-count: 3; A> column-gap: 2em; -moz-column-gap: 2em; -webkit-column-gap: 2em; A> } A>
A> .collection-method-list a { A> display: block; A> }

</style>

Arrays

<div class=”collection-method-list” markdown=”1”>

array_add array_collapse array_divide array_dot array_except array_first array_flatten array_-
forget array_get array_has array_last array_only array_pluck array_prepend array_pull array_set
array_sort array_sort_recursive array_where head last </div>

Paths

<div class=”collection-method-list” markdown=”1”>

app_path base_path config_path database_path elixir public_path resource_path storage_path

</div>

Strings

<div class=”collection-method-list” markdown=”1”>

camel_case class_basename e ends_with snake_case str_limit starts_with str_contains str_finish
str_is str_plural str_random str_singular str_slug studly_case title_case trans trans_choice

</div>

Helper Functions 701

URLs

<div class=”collection-method-list” markdown=”1”>

action asset secure_asset route secure_url url

</div>

Miscellaneous

<div class=”collection-method-list” markdown=”1”>

abort abort_if abort_unless auth back bcrypt cache collect config csrf_field csrf_token dd dispatch
env event factory info logger method_field old redirect request response session value view

</div>

Method Listing

<style> A> #collection-method code { A> font-size: 14px; A> } A> A> #collection-method:not(.first-
collection-method) { A> margin-top: 50px; A> }

</style>

Arrays

array_add() {#collection-method .first-collection-method}

The array_add function adds a given key / value pair to the array if the given key doesn’t already
exist in the array:

1 $array = array_add(['name' => 'Desk'], 'price', 100);

2

3 // ['name' => 'Desk', 'price' => 100]

array_collapse() {#collection-method}

The array_collapse function collapses an array of arrays into a single array:

Helper Functions 702

1 $array = array_collapse([[1, 2, 3], [4, 5, 6], [7, 8, 9]]);

2

3 // [1, 2, 3, 4, 5, 6, 7, 8, 9]

array_divide() {#collection-method}

The array_divide function returns two arrays, one containing the keys, and the other containing
the values of the original array:

1 list($keys, $values) = array_divide(['name' => 'Desk']);

2

3 // $keys: ['name']

4

5 // $values: ['Desk']

array_dot() {#collection-method}

The array_dot function flattens a multi-dimensional array into a single level array that uses “dot”
notation to indicate depth:

1 $array = array_dot(['foo' => ['bar' => 'baz']]);

2

3 // ['foo.bar' => 'baz'];

array_except() {#collection-method}

The array_except function removes the given key / value pairs from the array:

1 $array = ['name' => 'Desk', 'price' => 100];

2

3 $array = array_except($array, ['price']);

4

5 // ['name' => 'Desk']

Helper Functions 703

array_first() {#collection-method}

The array_first function returns the first element of an array passing a given truth test:

1 $array = [100, 200, 300];

2

3 $value = array_first($array, function ($value, $key) {

4 return $value >= 150;

5 });

6

7 // 200

A default value may also be passed as the third parameter to the method. This value will be returned
if no value passes the truth test:

1 $value = array_first($array, $callback, $default);

array_flatten() {#collection-method}

The array_flatten function will flatten a multi-dimensional array into a single level.

1 $array = ['name' => 'Joe', 'languages' => ['PHP', 'Ruby']];

2

3 $array = array_flatten($array);

4

5 // ['Joe', 'PHP', 'Ruby'];

array_forget() {#collection-method}

The array_forget function removes a given key / value pair from a deeply nested array using “dot”
notation:

Helper Functions 704

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 array_forget($array, 'products.desk');

4

5 // ['products' => []]

array_get() {#collection-method}

The array_get function retrieves a value from a deeply nested array using “dot” notation:

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 $value = array_get($array, 'products.desk');

4

5 // ['price' => 100]

The array_get function also accepts a default value, which will be returned if the specific key is not
found:

1 $value = array_get($array, 'names.john', 'default');

array_has() {#collection-method}

The array_has function checks that a given item or items exists in an array using “dot” notation:

1 $array = ['product' => ['name' => 'desk', 'price' => 100]];

2

3 $hasItem = array_has($array, 'product.name');

4

5 // true

6

7 $hasItems = array_has($array, ['product.price', 'product.discount']);

8

Helper Functions 705

9 // false

array_last() {#collection-method}

The array_last function returns the last element of an array passing a given truth test:

1 $array = [100, 200, 300, 110];

2

3 $value = array_last($array, function ($value, $key) {

4 return $value >= 150;

5 });

6

7 // 300

array_only() {#collection-method}

The array_only function will return only the specified key / value pairs from the given array:

1 $array = ['name' => 'Desk', 'price' => 100, 'orders' => 10];

2

3 $array = array_only($array, ['name', 'price']);

4

5 // ['name' => 'Desk', 'price' => 100]

array_pluck() {#collection-method}

The array_pluck function will pluck a list of the given key / value pairs from the array:

1 $array = [

2 ['developer' => ['id' => 1, 'name' => 'Taylor']],

3 ['developer' => ['id' => 2, 'name' => 'Abigail']],

4];

5

6 $array = array_pluck($array, 'developer.name');

7

Helper Functions 706

8 // ['Taylor', 'Abigail'];

You may also specify how you wish the resulting list to be keyed:

1 $array = array_pluck($array, 'developer.name', 'developer.id');

2

3 // [1 => 'Taylor', 2 => 'Abigail'];

array_prepend() {#collection-method}

The array_prepend function will push an item onto the beginning of an array:

1 $array = ['one', 'two', 'three', 'four'];

2

3 $array = array_prepend($array, 'zero');

4

5 // $array: ['zero', 'one', 'two', 'three', 'four']

array_pull() {#collection-method}

The array_pull function returns and removes a key / value pair from the array:

1 $array = ['name' => 'Desk', 'price' => 100];

2

3 $name = array_pull($array, 'name');

4

5 // $name: Desk

6

7 // $array: ['price' => 100]

array_set() {#collection-method}

The array_set function sets a value within a deeply nested array using “dot” notation:

Helper Functions 707

1 $array = ['products' => ['desk' => ['price' => 100]]];

2

3 array_set($array, 'products.desk.price', 200);

4

5 // ['products' => ['desk' => ['price' => 200]]]

array_sort() {#collection-method}

The array_sort function sorts the array by the results of the given Closure:

1 $array = [

2 ['name' => 'Desk'],

3 ['name' => 'Chair'],

4];

5

6 $array = array_values(array_sort($array, function ($value) {

7 return $value['name'];

8 }));

9

10 /*

11 [

12 ['name' => 'Chair'],

13 ['name' => 'Desk'],

14]

15 */

array_sort_recursive() {#collection-method}

The array_sort_recursive function recursively sorts the array using the sort function:

1 $array = [

2 [

3 'Roman',

4 'Taylor',

5 'Li',

6],

7 [

8 'PHP',

Helper Functions 708

9 'Ruby',

10 'JavaScript',

11],

12];

13

14 $array = array_sort_recursive($array);

15

16 /*

17 [

18 [

19 'Li',

20 'Roman',

21 'Taylor',

22],

23 [

24 'JavaScript',

25 'PHP',

26 'Ruby',

27]

28];

29 */

array_where() {#collection-method}

The array_where function filters the array using the given Closure:

1 $array = [100, '200', 300, '400', 500];

2

3 $array = array_where($array, function ($value, $key) {

4 return is_string($value);

5 });

6

7 // [1 => 200, 3 => 400]

head() {#collection-method}

The head function simply returns the first element in the given array:

Helper Functions 709

1 $array = [100, 200, 300];

2

3 $first = head($array);

4

5 // 100

last() {#collection-method}

The last function returns the last element in the given array:

1 $array = [100, 200, 300];

2

3 $last = last($array);

4

5 // 300

Paths

app_path() {#collection-method}

The app_path function returns the fully qualified path to the app directory. You may also use the
app_path function to generate a fully qualified path to a file relative to the application directory:

1 $path = app_path();

2

3 $path = app_path('Http/Controllers/Controller.php');

base_path() {#collection-method}

The base_path function returns the fully qualified path to the project root. You may also use the
base_path function to generate a fully qualified path to a given file relative to the project root
directory:

Helper Functions 710

1 $path = base_path();

2

3 $path = base_path('vendor/bin');

config_path() {#collection-method}

The config_path function returns the fully qualified path to the application configuration directory:

1 $path = config_path();

database_path() {#collection-method}

The database_path function returns the fully qualified path to the application’s database directory:

1 $path = database_path();

elixir() {#collection-method}

The elixir function gets the path to a versioned Elixir file:

1 elixir($file);

public_path() {#collection-method}

The public_path function returns the fully qualified path to the public directory:

1 $path = public_path();

Helper Functions 711

resource_path() {#collection-method}

The resource_path function returns the fully qualified path to the resources directory. You may
also use the resource_path function to generate a fully qualified path to a given file relative to the
storage directory:

1 $path = resource_path();

2

3 $path = resource_path('assets/sass/app.scss');

storage_path() {#collection-method}

The storage_path function returns the fully qualified path to the storage directory. You may also
use the storage_path function to generate a fully qualified path to a given file relative to the storage
directory:

1 $path = storage_path();

2

3 $path = storage_path('app/file.txt');

Strings

camel_case() {#collection-method}

The camel_case function converts the given string to camelCase:

1 $camel = camel_case('foo_bar');

2

3 // fooBar

class_basename() {#collection-method}

The class_basename returns the class name of the given class with the class’ namespace removed:

Helper Functions 712

1 $class = class_basename('Foo\Bar\Baz');

2

3 // Baz

e() {#collection-method}

The e function runs htmlentities over the given string:

1 echo e('<html>foo</html>');

2

3 // <html>foo</html>

ends_with() {#collection-method}

The ends_with function determines if the given string ends with the given value:

1 $value = ends_with('This is my name', 'name');

2

3 // true

snake_case() {#collection-method}

The snake_case function converts the given string to snake_case:

1 $snake = snake_case('fooBar');

2

3 // foo_bar

str_limit() {#collection-method}

The str_limit function limits the number of characters in a string. The function accepts a string as
its first argument and the maximum number of resulting characters as its second argument:

Helper Functions 713

1 $value = str_limit('The PHP framework for web artisans.', 7);

2

3 // The PHP...

starts_with() {#collection-method}

The starts_with function determines if the given string begins with the given value:

1 $value = starts_with('This is my name', 'This');

2

3 // true

str_contains() {#collection-method}

The str_contains function determines if the given string contains the given value:

1 $value = str_contains('This is my name', 'my');

2

3 // true

You may also pass an array of values to determine if the given string contains any of the values:

1 $value = str_contains('This is my name', ['my', 'foo']);

2

3 // true

str_finish() {#collection-method}

The str_finish function adds a single instance of the given value to a string:

Helper Functions 714

1 $string = str_finish('this/string', '/');

2

3 // this/string/

str_is() {#collection-method}

The str_is function determines if a given string matches a given pattern. Asterisks may be used to
indicate wildcards:

1 $value = str_is('foo*', 'foobar');

2

3 // true

4

5 $value = str_is('baz*', 'foobar');

6

7 // false

str_plural() {#collection-method}

The str_plural function converts a string to its plural form. This function currently only supports
the English language:

1 $plural = str_plural('car');

2

3 // cars

4

5 $plural = str_plural('child');

6

7 // children

You may provide an integer as a second argument to the function to retrieve the singular or plural
form of the string:

Helper Functions 715

1 $plural = str_plural('child', 2);

2

3 // children

4

5 $plural = str_plural('child', 1);

6

7 // child

str_random() {#collection-method}

The str_random function generates a random string of the specified length. This function uses PHP’s
random_bytes function:

1 $string = str_random(40);

str_singular() {#collection-method}

The str_singular function converts a string to its singular form. This function currently only
supports the English language:

1 $singular = str_singular('cars');

2

3 // car

str_slug() {#collection-method}

The str_slug function generates a URL friendly “slug” from the given string:

1 $title = str_slug('Laravel 5 Framework', '-');

2

3 // laravel-5-framework

Helper Functions 716

studly_case() {#collection-method}

The studly_case function converts the given string to StudlyCase:

1 $value = studly_case('foo_bar');

2

3 // FooBar

title_case() {#collection-method}

The title_case function converts the given string to Title Case:

1 $title = title_case('a nice title uses the correct case');

2

3 // A Nice Title Uses The Correct Case

trans() {#collection-method}

The trans function translates the given language line using your localization files:

1 echo trans('validation.required'):

trans_choice() {#collection-method}

The trans_choice function translates the given language line with inflection:

1 $value = trans_choice('foo.bar', $count);

URLs

action() {#collection-method}

The action function generates a URL for the given controller action. You do not need to pass
the full namespace to the controller. Instead, pass the controller class name relative to the

Helper Functions 717

App\Http\Controllers namespace:

1 $url = action('HomeController@getIndex');

If the method accepts route parameters, you may pass them as the second argument to the method:

1 $url = action('UserController@profile', ['id' => 1]);

asset() {#collection-method}

Generate a URL for an asset using the current scheme of the request (HTTP or HTTPS):

1 $url = asset('img/photo.jpg');

secure_asset() {#collection-method}

Generate a URL for an asset using HTTPS:

1 echo secure_asset('foo/bar.zip', $title, $attributes = []);

route() {#collection-method}

The route function generates a URL for the given named route:

1 $url = route('routeName');

If the route accepts parameters, you may pass them as the second argument to the method:

Helper Functions 718

1 $url = route('routeName', ['id' => 1]);

secure_url() {#collection-method}

The secure_url function generates a fully qualified HTTPS URL to the given path:

1 echo secure_url('user/profile');

2

3 echo secure_url('user/profile', [1]);

url() {#collection-method}

The url function generates a fully qualified URL to the given path:

1 echo url('user/profile');

2

3 echo url('user/profile', [1]);

If no path is provided, a Illuminate\Routing\UrlGenerator instance is returned:

1 echo url()->current();

2 echo url()->full();

3 echo url()->previous();

Miscellaneous

abort() {#collection-method}

The abort function throws a HTTP exception which will be rendered by the exception handler:

Helper Functions 719

1 abort(401);

You may also provide the exception’s response text:

1 abort(401, 'Unauthorized.');

abort_if() {#collection-method}

The abort_if function throws an HTTP exception if a given boolean expression evaluates to true:

1 abort_if(! Auth::user()->isAdmin(), 403);

abort_unless() {#collection-method}

The abort_unless function throws an HTTP exception if a given boolean expression evaluates to
false:

1 abort_unless(Auth::user()->isAdmin(), 403);

auth() {#collection-method}

The auth function returns an authenticator instance. You may use it instead of the Auth facade for
convenience:

1 $user = auth()->user();

back() {#collection-method}

The back() function generates a redirect response to the user’s previous location:

Helper Functions 720

1 return back();

bcrypt() {#collection-method}

The bcrypt function hashes the given value using Bcrypt. You may use it as an alternative to the
Hash facade:

1 $password = bcrypt('my-secret-password');

cache() {#collection-method}

The cache function may be used to get values from the cache. If the given key does not exist in the
cache, an optional default value will be returned:

1 $value = cache('key');

2

3 $value = cache('key', 'default');

You may add items to the cache by passing an array of key / value pairs to the function. You should
also pass the number of minutes or duration the cached value should be considered valid:

1 cache(['key' => 'value'], 5);

2

3 cache(['key' => 'value'], Carbon::now()->addSeconds(10));

collect() {#collection-method}

The collect function creates a collection instance from the given array:

1 $collection = collect(['taylor', 'abigail']);

Helper Functions 721

config() {#collection-method}

The config function gets the value of a configuration variable. The configuration values may be
accessed using “dot” syntax, which includes the name of the file and the option you wish to access.
A default value may be specified and is returned if the configuration option does not exist:

1 $value = config('app.timezone');

2

3 $value = config('app.timezone', $default);

The config helper may also be used to set configuration variables at runtime by passing an array
of key / value pairs:

1 config(['app.debug' => true]);

csrf_field() {#collection-method}

The csrf_field function generates an HTML hidden input field containing the value of the CSRF
token. For example, using Blade syntax:

1 {{ csrf_field() }}

csrf_token() {#collection-method}

The csrf_token function retrieves the value of the current CSRF token:

1 $token = csrf_token();

dd() {#collection-method}

The dd function dumps the given variables and ends execution of the script:

Helper Functions 722

1 dd($value);

2

3 dd($value1, $value2, $value3, ...);

If you do not want to halt the execution of your script, use the dump function instead:

1 dump($value);

dispatch() {#collection-method}

The dispatch function pushes a new job onto the Laravel job queue:

1 dispatch(new App\Jobs\SendEmails);

env() {#collection-method}

The env function gets the value of an environment variable or returns a default value:

1 $env = env('APP_ENV');

2

3 // Return a default value if the variable doesn't exist...

4 $env = env('APP_ENV', 'production');

event() {#collection-method}

The event function dispatches the given event to its listeners:

1 event(new UserRegistered($user));

Helper Functions 723

factory() {#collection-method}

The factory function creates a model factory builder for a given class, name, and amount. It can be
used while testing or seeding:

1 $user = factory(App\User::class)->make();

info() {#collection-method}

The info function will write information to the log:

1 info('Some helpful information!');

An array of contextual data may also be passed to the function:

1 info('User login attempt failed.', ['id' => $user->id]);

logger() {#collection-method}

The logger function can be used to write a debug level message to the log:

1 logger('Debug message');

An array of contextual data may also be passed to the function:

1 logger('User has logged in.', ['id' => $user->id]);

A logger instance will be returned if no value is passed to the function:

Helper Functions 724

1 logger()->error('You are not allowed here.');

method_field() {#collection-method}

The method_field function generates an HTML hidden input field containing the spoofed value of
the form’s HTTP verb. For example, using Blade syntax:

1 <form method="POST">

2 {{ method_field('DELETE') }}

3 </form>

old() {#collection-method}

The old function retrieves an old input value flashed into the session:

1 $value = old('value');

2

3 $value = old('value', 'default');

redirect() {#collection-method}

The redirect function returns a redirect HTTP response, or returns the redirector instance if called
with no arguments:

1 return redirect('/home');

2

3 return redirect()->route('route.name');

request() {#collection-method}

The request function returns the current request instance or obtains an input item:

Helper Functions 725

1 $request = request();

2

3 $value = request('key', $default = null)

response() {#collection-method}

The response function creates a response instance or obtains an instance of the response factory:

1 return response('Hello World', 200, $headers);

2

3 return response()->json(['foo' => 'bar'], 200, $headers);

session() {#collection-method}

The session function may be used to get or set session values:

1 $value = session('key');

You may set values by passing an array of key / value pairs to the function:

1 session(['chairs' => 7, 'instruments' => 3]);

The session store will be returned if no value is passed to the function:

1 $value = session()->get('key');

2

3 session()->put('key', $value);

value() {#collection-method}

The value function’s behavior will simply return the value it is given. However, if you pass a Closure
to the function, the Closure will be executed then its result will be returned:

Helper Functions 726

1 $value = value(function () {

2 return 'bar';

3 });

view() {#collection-method}

The view function retrieves a view instance:

1 return view('auth.login');

Package Development
• Introduction A> - A Note On Facades
• Service Providers
• Routing
• Resources A> - Configuration A> - Migrations A> - Translations A> - Views
• Commands
• Public Assets
• Publishing File Groups

Introduction

Packages are the primary way of adding functionality to Laravel. Packages might be anything from
a great way to work with dates like Carbon²⁷², or an entire BDD testing framework like Behat²⁷³.

Of course, there are different types of packages. Some packages are stand-alone, meaning they work
with any PHP framework. Carbon and Behat are examples of stand-alone packages. Any of these
packages may be used with Laravel by simply requesting them in your composer.json file.

On the other hand, other packages are specifically intended for use with Laravel. These packages
may have routes, controllers, views, and configuration specifically intended to enhance a Laravel
application. This guide primarily covers the development of those packages that are Laravel specific.

A Note On Facades

When writing a Laravel application, it generally does not matter if you use contracts or facades
since both provide essentially equal levels of testability. However, when writing packages, it is best
to use contracts instead of facades. Since your package will not have access to all of Laravel’s testing
helpers, it will be easier to mock or stub a contract than to mock a facade.

Service Providers

Service providers are the connection points between your package and Laravel. A service provider
is responsible for binding things into Laravel’s service container and informing Laravel where to
load package resources such as views, configuration, and localization files.

²⁷²https://github.com/briannesbitt/Carbon
²⁷³https://github.com/Behat/Behat

https://github.com/briannesbitt/Carbon
https://github.com/Behat/Behat
https://github.com/briannesbitt/Carbon
https://github.com/Behat/Behat

Package Development 728

A service provider extends the Illuminate\Support\ServiceProvider class and contains two
methods: register and boot. The base ServiceProvider class is located in the illuminate/support
Composer package, which you should add to your own package’s dependencies. To learn more about
the structure and purpose of service providers, check out their documentation.

Routing

To define routes for your package, pass the routes file path to the loadRoutesFrom method from
within your package service provider’s bootmethod. From within your routes file, you may use the
Illuminate\Support\Facades\Route facade to register routes just as you would within a typical
Laravel application:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadRoutesFrom(__DIR__.'/../../routes.php');

9 }

Resources

Configuration

Typically, you will need to publish your package’s configuration file to the application’s own config
directory. This will allow users of your package to easily override your default configuration options.
To allow your configuration files to be published, call the publishesmethod from the bootmethod
of your service provider:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

Package Development 729

8 $this->publishes([

9 __DIR__.'/path/to/config/courier.php' => config_path('courier.php'),

10]);

11 }

Now, when users of your package execute Laravel’s vendor:publish command, your file will be
copied to the specified publish location. Of course, once your configuration has been published, its
values may be accessed like any other configuration file:

1 $value = config('courier.option');

Default Package Configuration

You may also merge your own package configuration file with the application’s published copy. This
will allow your users to define only the options they actually want to override in the published copy
of the configuration. To merge the configurations, use the mergeConfigFrom method within your
service provider’s register method:

1 /**

2 * Register bindings in the container.

3 *

4 * @return void

5 */

6 public function register()

7 {

8 $this->mergeConfigFrom(

9 __DIR__.'/path/to/config/courier.php', 'courier'

10);

11 }

Migrations

If your package contains database migrations, you may use the loadMigrationsFrom method to
inform Laravel how to load them. The loadMigrationsFrom method accepts the path to your
package’s migrations as its only argument:

Package Development 730

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadMigrationsFrom(__DIR__.'/path/to/migrations');

9 }

Once your package’s migrations have been registered, they will automatically be run when the php
artisan migrate command is executed. You do not need to export them to the application’s main
database/migrations directory.

Translations

If your package contains translation files, youmay use the loadTranslationsFrommethod to inform
Laravel how to load them. For example, if your package is named courier, you should add the
following to your service provider’s boot method:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadTranslationsFrom(__DIR__.'/path/to/translations', 'courier');

9 }

Package translations are referenced using the package::file.line syntax convention. So, you may
load the courier package’s welcome line from the messages file like so:

1 echo trans('courier::messages.welcome');

Package Development 731

Publishing Translations

If you would like to publish your package’s translations to the application’s resources/lang/vendor
directory, you may use the service provider’s publishesmethod. The publishesmethod accepts an
array of package paths and their desired publish locations. For example, to publish the translation
files for the courier package, you may do the following:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadTranslationsFrom(__DIR__.'/path/to/translations', 'courier');

9

10 $this->publishes([

11 __DIR__.'/path/to/translations' => resource_path('lang/vendor/courier'),

12]);

13 }

Now, when users of your package execute Laravel’s vendor:publish Artisan command, your
package’s translations will be published to the specified publish location.

Views

To register your package’s views with Laravel, you need to tell Laravel where the views are located.
You may do this using the service provider’s loadViewsFrom method. The loadViewsFrom method
accepts two arguments: the path to your view templates and your package’s name. For example,
if your package’s name is courier, you would add the following to your service provider’s boot
method:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

Package Development 732

8 $this->loadViewsFrom(__DIR__.'/path/to/views', 'courier');

9 }

Package views are referenced using the package::view syntax convention. So, once your view path
is registered in a service provider, you may load the admin view from the courier package like so:

1 Route::get('admin', function () {

2 return view('courier::admin');

3 });

Overriding Package Views

When you use the loadViewsFrom method, Laravel actually registers two locations for your views:
the application’s resources/views/vendor directory and the directory you specify. So, using the
courier example, Laravel will first check if a custom version of the view has been provided by the
developer in resources/views/vendor/courier. Then, if the view has not been customized, Laravel
will search the package view directory you specified in your call to loadViewsFrom. This makes it
easy for package users to customize / override your package’s views.

Publishing Views

If youwould like tomake your views available for publishing to the application’s resources/views/ven-
dor directory, youmay use the service provider’s publishesmethod. The publishesmethod accepts
an array of package view paths and their desired publish locations:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->loadViewsFrom(__DIR__.'/path/to/views', 'courier');

9

10 $this->publishes([

11 __DIR__.'/path/to/views' => resource_path('views/vendor/courier'),

Package Development 733

12]);

13 }

Now, when users of your package execute Laravel’s vendor:publish Artisan command, your
package’s views will be copied to the specified publish location.

Commands

To register your package’s Artisan commands with Laravel, you may use the commandsmethod. This
method expects an array of command class names. Once the commands have been registered, you
may execute them using the Artisan CLI:

1 /**

2 * Bootstrap the application services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 if ($this->app->runningInConsole()) {

9 $this->commands([

10 FooCommand::class,

11 BarCommand::class,

12]);

13 }

14 }

Public Assets

Your package may have assets such as JavaScript, CSS, and images. To publish these assets to the
application’s public directory, use the service provider’s publishes method. In this example, we
will also add a public asset group tag, which may be used to publish groups of related assets:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

Package Development 734

5 */

6 public function boot()

7 {

8 $this->publishes([

9 __DIR__.'/path/to/assets' => public_path('vendor/courier'),

10], 'public');

11 }

Now, when your package’s users execute the vendor:publish command, your assets will be copied
to the specified publish location. Since you will typically need to overwrite the assets every time the
package is updated, you may use the --force flag:

1 php artisan vendor:publish --tag=public --force

Publishing File Groups

You may want to publish groups of package assets and resources separately. For instance, you
might want to allow your users to publish your package’s configuration files without being forced
to publish your package’s assets. You may do this by “tagging” them when calling the publishes

method from a package’s service provider. For example, let’s use tags to define two publish groups
in the boot method of a package service provider:

1 /**

2 * Perform post-registration booting of services.

3 *

4 * @return void

5 */

6 public function boot()

7 {

8 $this->publishes([

9 __DIR__.'/../config/package.php' => config_path('package.php')

10], 'config');

11

12 $this->publishes([

13 __DIR__.'/../database/migrations/' => database_path('migrations')

Package Development 735

14], 'migrations');

15 }

Now your users may publish these groups separately by referencing their tag when executing the
vendor:publish command:

1 php artisan vendor:publish --tag=config

	Table of Contents
	Contribution Guidelines
	Release Notes
	Support Policy
	Laravel 5.3 {#releases-laravel-5.3}
	Laravel 5.2 {#releases-laravel-5.2}
	Laravel 5.1.11 {#releases-laravel-5.1.11}
	Laravel 5.1.4 {#releases-laravel-5.1.4}
	Laravel 5.1 {#releases-laravel-5.1}
	Laravel 5.0 {#releases-laravel-5.0}
	Laravel 4.2
	Laravel 4.1

	Upgrade Guide
	Upgrading To 5.4.0 From 5.3 {#upgrade-upgrade-5.4.0}
	Upgrading To 5.3.0 From 5.2 {#upgrade-upgrade-5.3.0}
	Upgrading To 5.2.0 From 5.1 {#upgrade-upgrade-5.2.0}
	Upgrading To 5.1.11 {#upgrade-upgrade-5.1.11}
	Upgrading To 5.1.0 {#upgrade-upgrade-5.1.0}
	Upgrading To 5.0.16 {#upgrade-upgrade-5.0.16}
	Upgrading To 5.0 From 4.2 {#upgrade-upgrade-5.0}
	Upgrading To 4.2 From 4.1
	Upgrading To 4.1.29 From <= 4.1.x
	Upgrading To 4.1.26 From <= 4.1.25
	Upgrading To 4.1 From 4.0

	Contribution Guide
	Bug Reports
	Core Development Discussion
	Which Branch?
	Security Vulnerabilities
	Coding Style

	Installation
	Installation

	Configuration
	Introduction
	Accessing Configuration Values
	Environment Configuration
	Configuration Caching
	Maintenance Mode

	Directory Structure
	Introduction
	The Root Directory
	The App Directory

	Errors & Logging
	Introduction
	Configuration
	The Exception Handler
	HTTP Exceptions
	Logging

	Laravel Homestead
	Introduction
	Installation & Setup
	Daily Usage
	Network Interfaces

	Laravel Valet
	Introduction
	Installation
	Serving Sites
	Sharing Sites
	Viewing Logs
	Custom Valet Drivers
	Other Valet Commands

	Service Container
	Introduction
	Binding
	Resolving
	Container Events

	Service Providers
	Introduction
	Writing Service Providers
	Registering Providers
	Deferred Providers

	Facades
	Introduction
	When To Use Facades
	How Facades Work
	Facade Class Reference

	Contracts
	Introduction
	When To Use Contracts
	How To Use Contracts
	Contract Reference

	Routing
	Basic Routing
	Route Parameters
	Named Routes
	Route Groups
	Route Model Binding
	Form Method Spoofing
	Accessing The Current Route

	Middleware
	Introduction
	Defining Middleware
	Registering Middleware
	Middleware Parameters
	Terminable Middleware

	CSRF Protection
	Introduction
	Excluding URIs From CSRF Protection
	X-CSRF-TOKEN
	X-XSRF-TOKEN

	Controllers
	Introduction
	Basic Controllers
	Controller Middleware
	Resource Controllers
	Dependency Injection & Controllers
	Route Caching

	Request Lifecycle
	Introduction
	Lifecycle Overview
	Focus On Service Providers

	HTTP Requests
	Accessing The Request
	Retrieving Input

	HTTP Responses
	Creating Responses
	Redirects
	Other Response Types
	Response Macros

	HTTP Redirects
	Creating Redirects
	Redirecting To Named Routes
	Redirecting To Controller Actions
	Redirecting With Flashed Session Data

	HTTP Session
	Introduction
	Using The Session
	Adding Custom Session Drivers

	Validation
	Introduction
	Validation Quickstart
	Form Request Validation
	Manually Creating Validators
	Working With Error Messages
	Available Validation Rules
	Conditionally Adding Rules
	Validating Arrays
	Custom Validation Rules

	Views
	Creating Views
	Passing Data To Views
	View Composers

	Blade Templates
	Introduction
	Template Inheritance
	Displaying Data
	Control Structures
	Including Sub-Views
	Stacks
	Service Injection
	Extending Blade

	Localization
	Introduction
	Retrieving Language Lines
	Overriding Package Language Files

	JavaScript & CSS
	Introduction
	Writing CSS
	Writing JavaScript

	Compiling Assets (Laravel Elixir)
	Introduction
	Installation & Setup
	Running Elixir
	Working With Stylesheets
	Working With Scripts
	Copying Files & Directories
	Versioning / Cache Busting
	BrowserSync

	Authentication
	Introduction
	Authentication Quickstart
	Manually Authenticating Users
	HTTP Basic Authentication
	Adding Custom Guards
	Adding Custom User Providers
	Events

	Authorization
	Introduction
	Gates
	Creating Policies
	Writing Policies
	Authorizing Actions Using Policies

	Resetting Passwords
	Introduction
	Database Considerations
	Routing
	Views
	After Resetting Passwords
	Customization

	API Authentication (Passport)
	Introduction
	Installation
	Configuration
	Issuing Access Tokens
	Password Grant Tokens
	Implicit Grant Tokens
	Personal Access Tokens
	Protecting Routes
	Token Scopes
	Consuming Your API With JavaScript
	Events

	Encryption
	Introduction
	Configuration
	Using The Encrypter

	Hashing
	Introduction
	Basic Usage

	Event Broadcasting
	Introduction
	Concept Overview
	Defining Broadcast Events
	Authorizing Channels
	Broadcasting Events
	Receiving Broadcasts
	Presence Channels
	Notifications

	Cache
	Configuration
	Cache Usage
	Cache Tags
	Adding Custom Cache Drivers
	Events

	Events
	Introduction
	Registering Events & Listeners
	Defining Events
	Defining Listeners
	Queued Event Listeners
	Firing Events
	Event Subscribers

	Filesystem / Cloud Storage
	Introduction
	Configuration
	Obtaining Disk Instances
	Retrieving Files
	Storing Files
	Deleting Files
	Directories
	Custom Filesystems

	Mail
	Introduction
	Generating Mailables
	Writing Mailables
	Sending Mail
	Mail & Local Development
	Events

	Notifications
	Introduction
	Creating Notifications
	Sending Notifications
	Mail Notifications
	Database Notifications
	Broadcast Notifications
	SMS Notifications
	Slack Notifications
	Notification Events
	Custom Channels

	Queues
	Introduction
	Creating Jobs
	Dispatching Jobs
	Running The Queue Worker
	Supervisor Configuration
	Dealing With Failed Jobs
	Job Events

	Database: Getting Started
	Introduction
	Running Raw SQL Queries
	Database Transactions

	Database: Query Builder
	Introduction
	Retrieving Results
	Selects
	Raw Expressions
	Joins
	Unions
	Where Clauses
	Ordering, Grouping, Limit, & Offset
	Conditional Clauses
	Inserts
	Updates
	Deletes
	Pessimistic Locking

	Pagination
	Introduction
	Basic Usage
	Displaying Pagination Results
	Customizing The Pagination View
	Paginator Instance Methods

	Database: Migrations
	Introduction
	Generating Migrations
	Migration Structure
	Running Migrations
	Tables
	Columns
	Indexes

	Database: Seeding
	Introduction
	Writing Seeders
	Running Seeders

	Redis
	Introduction
	Interacting With Redis
	Pub / Sub

	Eloquent: Getting Started
	Introduction
	Defining Models
	Retrieving Models
	Retrieving Single Models / Aggregates
	Inserting & Updating Models
	Deleting Models
	Query Scopes
	Events

	Eloquent: Relationships
	Introduction
	Defining Relationships
	Querying Relations
	Eager Loading
	Inserting & Updating Related Models
	Touching Parent Timestamps

	Eloquent: Collections
	Introduction
	Available Methods
	Custom Collections

	Eloquent: Mutators
	Introduction
	Accessors & Mutators
	Date Mutators
	Attribute Casting

	Eloquent: Serialization
	Introduction
	Serializing Models & Collections
	Hiding Attributes From JSON
	Appending Values To JSON

	Console Commands
	Introduction
	Writing Commands
	Defining Input Expectations
	Command I/O
	Registering Commands
	Programatically Executing Commands

	Task Scheduling
	Introduction
	Defining Schedules
	Task Output
	Task Hooks

	Testing
	Introduction
	Environment
	Creating & Running Tests

	Application Testing
	Introduction
	Interacting With Your Application

	Database Testing
	Introduction
	Resetting The Database After Each Test
	Writing Factories
	Using Factories

	Mocking
	Introduction
	Events
	Jobs
	Mail Fakes
	Notification Fakes
	Facades

	Laravel Cashier
	Introduction
	Configuration
	Subscriptions
	Subscription Trials
	Handling Stripe Webhooks
	Handling Braintree Webhooks
	Single Charges
	Invoices

	Envoy Task Runner
	Introduction
	Writing Tasks
	Running Tasks

	API Authentication (Passport)
	Introduction
	Installation
	Configuration
	Issuing Access Tokens
	Password Grant Tokens
	Implicit Grant Tokens
	Personal Access Tokens
	Protecting Routes
	Token Scopes
	Consuming Your API With JavaScript
	Events

	Laravel Scout
	Introduction
	Installation
	Configuration
	Indexing
	Searching
	Custom Engines

	Collections
	Introduction
	Available Methods
	Method Listing

	Helper Functions
	Introduction
	Available Methods
	Method Listing
	Arrays
	Paths
	Strings
	URLs
	Miscellaneous

	Package Development
	Introduction
	Service Providers
	Routing
	Resources
	Commands
	Public Assets
	Publishing File Groups

