
SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 26: Indexing and Hashing/1:
Indexing/1

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan26.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Week 05 Recap

 Module 21: Application Design and
Development/1
 Application Programs and User Interfaces
 Web Fundamentals
 Servlets and JSP

 Module 22: Application Design and
Development/2
 Application Architectures
 Rapid Application Development
 Application Performance
 Application Security
 Mobile Apps

 Module 23: Application Design and
Development/3
 Case Studies of Database Applications

 Module 24: Storage and File Structure/1
(Storage)
 Overview of Physical Storage Media
 Magnetic Disks
 RAID
 Tertiary Storage

 Module 25: Storage and File Structure/2 (File
Structure)
 File Organization
 Organization of Records in Files
 Data-Dictionary Storage
 Storage Access

PPD

©Silberschatz, Korth and Sudarshan26.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To understand the reasons for which we need to index database table
 To learn about the ordered indexes and Indexed Sequential Access Mechanism

PPD

©Silberschatz, Korth and Sudarshan26.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Basic Concepts of Indexing
 Ordered Indices

PPD

©Silberschatz, Korth and Sudarshan26.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

BASIC CONCEPTS OF INDEXING

PPD

• Basic Concepts of
Indexing

• Ordered Indices

©Silberschatz, Korth and Sudarshan26.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Search Records
 Consider a table: Faculty(Name, Phone)

 How to search on Name?
 Get the phone number for ‘Pabitra Mitra’
 Use “Name” Index – sorted on ‘Name’, search ‘Pabitra Mitra’ and navigate on pointer (rec #)

 How to search on Phone?
 Get the name of the faculty having phone number = 84772
 Use “Phone” Index – sorted on ‘Phone’, search ‘84772’ and navigate on pointer (rec #)

 We can keep the records sorted on ‘Name’ or on ‘Phone’ (called the primary index), but not on both

PPD

Index on "Name" Table "Faculty" Index on "Phone"

Name Pointer Rec # Name Phone Pointer Phone
Anupam Basu 2 1Partha Pratim Das 81998 6 81664
Pabitra Mitra 6 2Anupam Basu 82404 1 81998
Partha Pratim Das 1 3Ranjan Sen 84624 2 82404
Prabir Kumar Biswas 7 4Sudeshna Sarkar 82432 4 82432
Rajib Mall 5 5Rajib Mall 83668 5 83668
Ranjan Sen 3 6Pabitra Mitra 81664 3 84624

Sudeshna Sarkar 4 7Prabir Kumar Biswas 84772 7 84772

©Silberschatz, Korth and Sudarshan26.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Basic Concepts

 Indexing mechanisms used to speed up access to desired data.
 For example:

 Name in a faculty table
 author catalog in library

 Search Key - attribute to set of attributes used to look up records in a file
 An index file consists of records (called index entries) of the form

 Index files are typically much smaller than the original file
 Two basic kinds of indices:

 Ordered indices: search keys are stored in sorted order
 Hash indices: search keys are distributed uniformly across “buckets” using a “hash function”

search-key pointer

©Silberschatz, Korth and Sudarshan26.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Index Evaluation Metrics

 Access types supported efficiently. For example,
 records with a specified value in the attribute, or
 records with an attribute value falling in a specified range of values

 Access time
 Insertion time
 Deletion time
 Space overhead

©Silberschatz, Korth and Sudarshan26.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

ORDERED INDICES

PPD

• Basic Concepts of
Indexing

• Ordered Indices

©Silberschatz, Korth and Sudarshan26.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Ordered Indices

 In an ordered index, index entries are stored sorted on the search key value. For example, author
catalog in library

 Primary index: in a sequentially ordered file, the index whose search key specifies the sequential
order of the file
 Also called clustering index
 The search key of a primary index is usually but not necessarily the primary key

 Secondary index: an index whose search key specifies an order different from the sequential order
of the file
 Also called non-clustering index

 Index-sequential file: ordered sequential file with a primary index

©Silberschatz, Korth and Sudarshan26.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Dense Index Files

 Dense index — Index record appears for every search-key value in the file.
 E.g. index on ID attribute of instructor relation

©Silberschatz, Korth and Sudarshan26.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on dept_name

©Silberschatz, Korth and Sudarshan26.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Sparse Index Files

 Sparse Index: contains index records for only some search-key values.
 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:
 Find index record with largest search-key value < K
 Search file sequentially starting at the record to which the index record points

©Silberschatz, Korth and Sudarshan26.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Sparse Index Files (Cont.)

 Compared to dense indices:
 Less space and less maintenance overhead for insertions and deletions
 Generally slower than dense index for locating records

 Good tradeoff: sparse index with an index entry for every block in file, corresponding to least
search-key value in the block

©Silberschatz, Korth and Sudarshan26.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the actual records with that
particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor

©Silberschatz, Korth and Sudarshan26.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records
 BUT: Updating indices imposes overhead on database modification --when a file is

modified, every index on the file must be updated
 Sequential scan using primary index is efficient, but a sequential scan using a

secondary index is expensive
 Each record access may fetch a new block from disk
 Block fetch requires about 5 to 10 milliseconds, versus about 100 nanoseconds for

memory access

©Silberschatz, Korth and Sudarshan26.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Multilevel Index
 If primary index does not fit in memory, access becomes expensive
 Solution: treat primary index kept on disk as a sequential file and construct a sparse

index on it
 outer index – a sparse index of primary index
 inner index – the primary index file

 If even outer index is too large to fit in main memory, yet another level of index can be
created, and so on

 Indices at all levels must be updated on insertion or deletion from the file

©Silberschatz, Korth and Sudarshan26.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Multilevel Index (Cont.)

©Silberschatz, Korth and Sudarshan26.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Index Update: Deletion

 Single-level index entry deletion:
 Dense indices – deletion of search-key is similar to file record deletion
 Sparse indices –

 If an entry for the search key exists in the index, it is deleted by replacing the
entry in the index with the next search-key value in the file (in search-key order)

 If the next search-key value already has an index entry, the entry is deleted
instead of being replaced

 If deleted record was the only
record in the file with its particular
search-key value, the search-key
is deleted from the index also.

©Silberschatz, Korth and Sudarshan26.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Index Update: Insertion

 Single-level index insertion:
 Perform a lookup using the search-key value appearing in the record to be inserted
 Dense indices – if the search-key value does not appear in the index, insert it
 Sparse indices – if index stores an entry for each block of the file, no change

needs to be made to the index unless a new block is created
 If a new block is created, the first search-key value appearing in the new block

is inserted into the index
 Multilevel insertion and deletion: algorithms are simple extensions of the single-

level algorithms

©Silberschatz, Korth and Sudarshan26.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Secondary Indices

 Frequently, one wants to find all the records whose values in a certain field (which is not
the search-key of the primary index) satisfy some condition
 Example 1: In the instructor relation stored sequentially by ID, we may want to find

all instructors in a particular department
 Example 2: as above, but where we want to find all instructors with a specified salary

or with salary in a specified range of values
 We can have a secondary index with an index record for each search-key value

©Silberschatz, Korth and Sudarshan26.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Appreciated the reasons for indexing database tables
 Understood Indexed Sequential Access Mechanism (ISAM) and associated notions of the ordered

indexes

©Silberschatz, Korth and Sudarshan26.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 27: Indexing and Hashing/2:
Indexing/2

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan27.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Basic Concepts of Indexing
 Ordered Indices

PPD

©Silberschatz, Korth and Sudarshan27.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To recap Balanced Binary Search Trees as options for optimal in-memory search data
structures and understand the issues relating to external search data structures for persistent
data

 To study 2-3-4 Tree as a precursor to B/B+-Tree for an efficient external data structure for
database and index tables

PPD

©Silberschatz, Korth and Sudarshan27.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Balanced Binary Search Trees
 2-3-4 Tree

PPD

©Silberschatz, Korth and Sudarshan27.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

BALANCED BINARY SEARCH TREES

PPD

• Balanced Binary
Search Trees

• 2-3-4 Tree

©Silberschatz, Korth and Sudarshan27.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Search Data Structures

 How to search a key in a list of n data items?
 Linear Search: O(n): Find 28  16 comparisons

 Unordered items in an array – search sequentially
 Unordered / Ordered items in a list – search sequentially

 Binary Search: O(log2 n): Find 28  4 comparisons – 25, 36, 30, 28
 Ordered items in an array – search by divide-and-conquer

 Binary Search Tree – recursively on left / right

PPD

01 05 08 10 12 15 20 22 25 28 30 36 38 40 45 48 50 END

22 50 20 36 40 15 08 01 45 48 30 10 38 12 25 28 05 END

©Silberschatz, Korth and Sudarshan27.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Search Data Structures

 Worst case time (n data items in the data structure):

 Between an array and a list, there is a trade-off between search and insert/delete complexity
 For a BST of n nodes, log n <= h <= n, where h is the height of the tree
 A BST is balanced if h ~ O(log n) – this what we desire

Data Structure Search Insert Delete Remarks
Unordered Array O(n) O(1) O(1) The time to Insert /

Delete an item is the
time after the location
of the item has been
ascertained by
Search.

Ordered Array O(log n) O(n) O(n)
Unordered List O(n) O(1) O(1)
Ordered List O(n) O(1) O(1)
Binary Search Tree O(h) O(1) O(1)

PPD

©Silberschatz, Korth and Sudarshan27.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Balanced Binary Search Trees

 A BST is balanced if h ~ O(log n)
 Balancing guarantees may be of various types:

 Worst-case
 AVL Tree

 Randomized
 Randomized BST, Skip List

 Amortized
 Splay

 These data structures have optimal complexity for all of search, insert and delete – O(log n).
However:
 Good for in memory operations
 Work well for small volume of data
 Has complex rotation and / or similar operations
 Do not scale for external data structures

PPD

©Silberschatz, Korth and Sudarshan27.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 TREE

PPD

• Balanced Binary
Search Trees

• 2-3-4 Tree

©Silberschatz, Korth and Sudarshan27.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees

 All leaves are at the same depth (the bottom level).
 Height, h, of all leaf nodes are same

 h ~ O(log n)
 Complexity of search, insert and delete: O(h) ~ O(log n)

 All data is kept in sorted order
 Every node (leaf or internal) is a 2-node, 3-node or a 4-node, and holds one, two, or three data

elements, respectively
 Generalizes easily to larger nodes
 Extends to external data structures

PPD

©Silberschatz, Korth and Sudarshan27.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees

 Uses 3 kinds of nodes satisfying key relationships as shown below:
 A 2-node must contain a single data item (S) and two links
 A 3-node must contain two data items (S, L) and three links
 A 4-node must contain three data items (S, M, L) and four links
 A leaf may contain either one, two, or three data items

PPD

©Silberschatz, Korth and Sudarshan27.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Search

 Search
 Simple and natural extension of search in BST

PPD

©Silberschatz, Korth and Sudarshan27.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert

 Insert
 Search to find expected location

 If it is a 2 node, change to 3 node and insert
 If it is a 3 node, change to 4 node and insert
 If it is a 4 node, split the node by moving the middle item to parent node, then insert

 Node Splitting
 A 4-node is split as soon as it is encountered during a search from the root to a leaf
 The 4-node that is split will

– Be the root, or
– Have a 2-node parent, or
– Have a 3-node parent

PPD

©Silberschatz, Korth and Sudarshan27.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert

 Splitting at Root

PPD

©Silberschatz, Korth and Sudarshan27.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert

 Splitting with 2 Node parent

PPD

©Silberschatz, Korth and Sudarshan27.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert

 Splitting with 3 Node parent

PPD

©Silberschatz, Korth and Sudarshan27.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 Insert 10, 30, 60, 20, 50, 40, 70, 80, 15, 90, 100
 10
 10, 30
 10, 30, 60
 Split for 20

PPD

©Silberschatz, Korth and Sudarshan27.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 10, 30, 60, 20
 10, 30, 60, 20, 50

PPD

©Silberschatz, Korth and Sudarshan27.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 10, 30, 60, 20, 50, 40
 Split for 70

PPD

©Silberschatz, Korth and Sudarshan27.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 10, 30, 60, 20, 50, 40, 70
 10, 30, 60, 20, 50, 40, 70, 80

PPD

©Silberschatz, Korth and Sudarshan27.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 10, 30, 60, 20, 50, 40, 70, 80, 15
 Split for 90

PPD

©Silberschatz, Korth and Sudarshan27.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 10, 30, 60, 20, 50, 40, 70, 80, 15, 90
 Split for 100

PPD

©Silberschatz, Korth and Sudarshan27.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Insert: Example

 10, 30, 60, 20, 50, 40, 70, 80, 15, 90, 100

PPD

©Silberschatz, Korth and Sudarshan27.24Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees: Delete

 Delete
 Locate the node n that contains the item theItem
 Find theItem’s inorder successor and swap it with theItem (deletion will always be at a leaf)
 If that leaf is a 3-node or a 4-node, remove theItem
 To ensure that theItem does not occur in a 2-node

 Transform each 2-node encountered into a 3-node or a 4-node
 Reverse different cases illustrated for splitting

PPD

©Silberschatz, Korth and Sudarshan27.25Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees

 Advantages
 All leaves are at the same depth (the bottom level): Height, h ~ O(log n)
 Complexity of search, insert and delete: O(h) ~ O(log n)
 All data is kept in sorted order
 Generalizes easily to larger nodes
 Extends to external data structures

 Disadvantages
 Uses variety of node types – need to destruct and construct multiple nodes for converting a

2 Node to 3 Node, a 3 Node to 4 Node, for splitting etc.

PPD

©Silberschatz, Korth and Sudarshan27.26Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

2-3-4 Trees

 Consider only one node type with space for 3 items and 4 links
 Internal node (non-root) has 2 to 4 children (links)
 Leaf node has 1 to 3 items
 Wastes some space, but has several advantages for external data structure

 Generalizes easily to larger nodes
 All paths from root to leaf are of the same length
 Each node that is not a root or a leaf has between n/2 and n children.
 A leaf node has between (n–1)/2 and n–1 values
 Special cases:

 If the root is not a leaf, it has at least 2 children.
 If the root is a leaf, it can have between 0 and (n–1) values.

 Extends to external data structures
 B-Tree
 2-3-4 Tree is a B-Tree where n = 4

PPD

©Silberschatz, Korth and Sudarshan27.27Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Recapitulated the notions of Balanced Binary Search Trees as options for optimal in-memory
search data structures

 Understood the issues relating to external data structures for persistent data
 Explored 2-3-4 Tree in depth as a precursor to B/B+-Tree for an efficient external data structure

for database and index tables

©Silberschatz, Korth and Sudarshan27.28Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 28: Indexing and Hashing/3:
Indexing/3

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan28.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Balanced Binary Search Trees
 2-3-4 Tree

PPD

©Silberschatz, Korth and Sudarshan28.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To understand the design of B+-Tree Index Files as a generalization of 2-3-4 Tree
 To understand the fundamentals of B-Tree Index Files

PPD

©Silberschatz, Korth and Sudarshan28.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 B+-Tree Index Files
 B-Tree Index Files

PPD

©Silberschatz, Korth and Sudarshan28.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-TREE INDEX FILES

PPD

• B+-Tree Index Files
• B-Tree Index Files

©Silberschatz, Korth and Sudarshan28.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree Index Files

 Disadvantage of indexed-sequential files
 performance degrades as file grows, since many overflow blocks get created
 Periodic reorganization of entire file is required

 Advantage of B+-tree index files:
 automatically reorganizes itself with small, local, changes, in the face of insertions

and deletions
 Reorganization of entire file is not required to maintain performance

 (Minor) disadvantage of B+-trees:
 extra insertion and deletion overhead, space overhead

 Advantages of B+-trees outweigh disadvantages
 B+-trees are used extensively

B+-tree indices are an alternative to indexed-sequential files

©Silberschatz, Korth and Sudarshan28.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example of B+-Tree

©Silberschatz, Korth and Sudarshan28.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree Index Files (Cont.)

 All paths from root to leaf are of the same length
 Each node that is not a root or a leaf has between n/2 and n children.
 A leaf node has between (n–1)/2 and n–1 values
 Special cases:

 If the root is not a leaf, it has at least 2 children.
 If the root is a leaf (that is, there are no other nodes in the tree), it can have between

0 and (n–1) values.

A B+-tree is a rooted tree satisfying the following properties:

©Silberschatz, Korth and Sudarshan28.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree Node Structure

 Typical node

 Ki are the search-key values
 Pi are pointers to children (for non-leaf nodes) or pointers to records or buckets of

records (for leaf nodes).
 The search-keys in a node are ordered

K1 < K2 < K3 < . . . < Kn–1

(Initially assume no duplicate keys, address duplicates later)

©Silberschatz, Korth and Sudarshan28.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Leaf Nodes in B+-Trees

 For i = 1, 2, . . ., n–1, pointer Pi points to a file record with
search-key value Ki,

 If Li, Lj are leaf nodes and i < j, Li’s search-key values are less
than or equal to Lj’s search-key values

 Pn points to next leaf node in search-key order

Properties of a leaf node:

©Silberschatz, Korth and Sudarshan28.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Non-Leaf Nodes in B+-Trees

 Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node
with m pointers:
 All the search-keys in the subtree to which P1 points are less than K1

 For 2 ≤ i ≤ n – 1, all the search-keys in the subtree to which Pi points have values
greater than or equal to Ki–1 and less than Ki

 All the search-keys in the subtree to which Pn points have values greater than or
equal to Kn–1

©Silberschatz, Korth and Sudarshan28.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example of B+-tree

 Leaf nodes must have between 3 and 5 values
((n–1)/2 and n –1, with n = 6)

 Non-leaf nodes other than root must have between 3
and 6 children ((n/2 and n with n =6)

 Root must have at least 2 children

B+-tree for instructor file (n = 6)

©Silberschatz, Korth and Sudarshan28.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Observations about B+-trees

 Since the inter-node connections are done by pointers, “logically” close blocks need not
be “physically” close

 The non-leaf levels of the B+-tree form a hierarchy of sparse indices
 The B+-tree contains a relatively small number of levels

Level below root has at least 2* n/2 values
Next level has at least 2* n/2 * n/2 values
 .. etc.

 If there are K search-key values in the file, the tree height is no more than  logn/2(K)
 thus searches can be conducted efficiently

 Insertions and deletions to the main file can be handled efficiently, as the index can be
restructured in logarithmic time

©Silberschatz, Korth and Sudarshan28.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Queries on B+-Trees
 Find record with search-key value V

1. C=root
2. While C is not a leaf node {

1. Let i be least value s.t. V ≤ Ki.
2. If no such exists, set C = last non-null pointer in C
3. Else { if (V= Ki) Set C = Pi +1 else set C = Pi}
}

3. Let i be least value s.t. Ki = V
4. If there is such a value i, follow pointer Pi to the desired record
5. Else no record with search-key value k exists

©Silberschatz, Korth and Sudarshan28.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Handling Duplicates

 With duplicate search keys
 In both leaf and internal nodes,

we cannot guarantee that K1 < K2 < K3 < . . . < Kn–1

but can guarantee K1 ≤ K2 ≤ K3 ≤ . . . ≤ Kn–1

 Search-keys in the subtree to which Pi points
are ≤ Ki,, but not necessarily < Ki,

To see why, suppose same search key value V is present in two leaf node Li
and Li+1. Then in parent node Ki must be equal to V

©Silberschatz, Korth and Sudarshan28.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Handling Duplicates

 We modify find procedure as follows
 traverse Pi even if V = Ki

 As soon as we reach a leaf node C check if C has only search key
values less than V
if so set C = right sibling of C before checking whether C contains

V
 Procedure printAll

 uses modified find procedure to find first occurrence of V
 Traverse through consecutive leaves to find all occurrences of V

** Errata note: modified find procedure missing in first printing of 6th edition

©Silberschatz, Korth and Sudarshan28.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Queries on B+-Trees (Cont.)

 If there are K search-key values in the file, the height of the tree is no more than logn/2(K)
 A node is generally the same size as a disk block, typically 4 kilobytes

 and n is typically around 100 (40 bytes per index entry)
 With 1 million search key values and n = 100

 at most log50(1,000,000) = 4 nodes are accessed in a lookup
 Contrast this with a balanced binary tree with 1 million search key values — around 20 nodes are

accessed in a lookup
 above difference is significant since every node access may need a disk I/O, costing around

20 milliseconds

©Silberschatz, Korth and Sudarshan28.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Updates on B+-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node

1. Add record to the file
2. If necessary add a pointer to the bucket

3. If the search-key value is not present, then
1. Add the record to the main file (and create a bucket if necessary)
2. If there is room in the leaf node, insert (key-value, pointer) pair in the leaf node
3. Otherwise, split the node (along with the new (key-value, pointer) entry) as

discussed in the next slide

©Silberschatz, Korth and Sudarshan28.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Updates on B+-Trees: Insertion (Cont.)

 Splitting a leaf node:
 take the n (search-key value, pointer) pairs (including the one being inserted) in sorted

order. Place the first n/2 in the original node, and the rest in a new node
 let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent of the

node being split
 If the parent is full, split it and propagate the split further up

 Splitting of nodes proceeds upwards till a node that is not full is found
 In the worst case the root node may be split increasing the height of the tree by 1

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

©Silberschatz, Korth and Sudarshan28.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree Insertion

B+-Tree before and after insertion of “Adams”

©Silberschatz, Korth and Sudarshan28.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree Insertion

B+-Tree before and after insertion of “Lamport”

©Silberschatz, Korth and Sudarshan28.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

 Splitting a non-leaf node: when inserting (k,p) into an already full internal node N
 Copy N to an in-memory area M with space for n+1 pointers and n keys
 Insert (k,p) into M
 Copy P1,K1, …, K n/2-1,P n/2 from M back into node N
 Copy Pn/2+1,K n/2+1,…,Kn,Pn+1 from M into newly allocated node N’
 Insert (K n/2,N’) into parent N

 Read pseudocode in book!

Insertion in B+-Trees (Cont.)

CrickAdams Brandt Califieri Crick Adams Brandt

Califieri

©Silberschatz, Korth and Sudarshan28.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Examples of B+-Tree Deletion

 Deleting “Srinivasan” causes merging of under-full leaves

Before and after deleting “Srinivasan”

©Silberschatz, Korth and Sudarshan28.24Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Examples of B+-Tree Deletion (Cont.)

Deletion of “Singh” and “Wu” from result of previous example

 Leaf containing Singh and Wu became underfull, and borrowed a value Kim from its left sibling
 Search-key value in the parent changes as a result

©Silberschatz, Korth and Sudarshan28.25Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example of B+-tree Deletion (Cont.)

Before and after deletion of “Gold” from earlier example

 Node with Gold and Katz became underfull, and was merged with its sibling
 Parent node becomes underfull, and is merged with its sibling

 Value separating two nodes (at the parent) is pulled down when merging
 Root node then has only one child, and is delete

©Silberschatz, Korth and Sudarshan28.26Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Updates on B+-Trees: Deletion

 Find the record to be deleted, and remove it from the main file and from the bucket (if present)
 Remove (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has

become empty
 If the node has too few entries due to the removal, and the entries in the node and a sibling fit

into a single node, then merge siblings:
 Insert all the search-key values in the two nodes into a single node (the one on the left), and

delete the other node.
 Delete the pair (Ki–1, Pi), where Pi is the pointer to the deleted node, from its parent,

recursively using the above procedure.

©Silberschatz, Korth and Sudarshan28.27Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Updates on B+-Trees: Deletion

 Otherwise, if the node has too few entries due to the removal, but the entries in the node and a
sibling do not fit into a single node, then redistribute pointers:
 Redistribute the pointers between the node and a sibling such that both have more than the

minimum number of entries
 Update the corresponding search-key value in the parent of the node

 The node deletions may cascade upwards till a node which has n/2 or more pointers is found
 If the root node has only one pointer after deletion, it is deleted and the sole child becomes the root

©Silberschatz, Korth and Sudarshan28.29Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree File Organization

 Index file degradation problem is solved by using B+-Tree indices
 Data file degradation problem is solved by using B+-Tree File Organization
 The leaf nodes in a B+-tree file organization store records, instead of pointers
 Leaf nodes are still required to be half full

 Since records are larger than pointers, the maximum number of records that can be stored in
a leaf node is less than the number of pointers in a non-leaf node

 Insertion and deletion are handled in the same way as insertion and deletion of entries in a B+-
tree index

©Silberschatz, Korth and Sudarshan28.30Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B+-Tree File Organization (Cont.)

 Good space utilization important since records use more space than pointers.
 To improve space utilization, involve more sibling nodes in redistribution during splits and merges

 Involving 2 siblings in redistribution (to avoid split / merge where possible) results in each
node having at least entries

Example of B+-tree File Organization

 3/2n

©Silberschatz, Korth and Sudarshan28.31Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Other Issues in Indexing

 Record relocation and secondary indices
 If a record moves, all secondary indices that store record pointers have to be updated
 Node splits in B+-tree file organizations become very expensive
 Solution: use primary-index search key instead of record pointer in secondary index

 Extra traversal of primary index to locate record
– Higher cost for queries, but node splits are cheap

 Add record-id if primary-index search key is non-unique

©Silberschatz, Korth and Sudarshan28.32Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Indexing Strings

 Variable length strings as keys
 Variable fanout
 Use space utilization as criterion for splitting, not number of pointers

 Prefix compression
 Key values at internal nodes can be prefixes of full key

Keep enough characters to distinguish entries in the subtrees separated by the
key value
– E.g. “Silas” and “Silberschatz” can be separated by “Silb”

 Keys in leaf node can be compressed by sharing common prefixes

©Silberschatz, Korth and Sudarshan28.33Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B-TREE INDEX FILES

PPD

• B+-Tree Index Files
• B-Tree Index Files

©Silberschatz, Korth and Sudarshan28.34Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B-Tree Index Files

 Similar to B+-tree, but B-tree allows search-key values to appear only once; eliminates redundant
storage of search keys

 Search keys in non-leaf nodes appear nowhere else in the B-tree; an additional pointer field for
each search key in a non-leaf node must be included

 Generalized B-tree leaf node

 Non-leaf node – pointers Bi are the bucket or file record pointers

©Silberschatz, Korth and Sudarshan28.35Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B-Tree Index File Example

B-tree (above) and B+-tree (below) on same data

©Silberschatz, Korth and Sudarshan28.36Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

B-Tree Index Files (Cont.)

 Advantages of B-Tree indices:
 May use less tree nodes than a corresponding B+-Tree
 Sometimes possible to find search-key value before reaching leaf node

 Disadvantages of B-Tree indices:
 Only small fraction of all search-key values are found early
 Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have greater depth

than corresponding B+-Tree
 Insertion and deletion more complicated than in B+-Trees
 Implementation is harder than B+-Trees

 Typically, advantages of B-Trees do not out weigh disadvantages

©Silberschatz, Korth and Sudarshan28.37Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Understood the design of B+-Tree Index Files in depth for database persistent store
 Familiarized with B-Tree Index Files

©Silberschatz, Korth and Sudarshan28.38Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 29: Indexing and Hashing/4:
Hashing

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan29.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 B+-Tree Index Files
 B-Tree Index Files

PPD

©Silberschatz, Korth and Sudarshan29.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To explore various hashing schemes – Static and Dynamic Hashing
 To compare Ordered Indexing and Hashing
 To understand the Bitmap Indices

PPD

©Silberschatz, Korth and Sudarshan29.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices

PPD

©Silberschatz, Korth and Sudarshan29.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

STATIC HASHING

PPD

• Static Hashing
• Dynamic Hashing
• Comparison of

Ordered Indexing
and Hashing

• Bitmap Indices

©Silberschatz, Korth and Sudarshan29.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Static Hashing

 A bucket is a unit of storage containing one or more records (a bucket is typically a disk block)
 In a hash file organization we obtain the bucket of a record directly from its search-key value

using a hash function
 Hash function h is a function from the set of all search-key values K to the set of all bucket

addresses B
 Hash function is used to locate records for access, insertion as well as deletion
 Records with different search-key values may be mapped to the same bucket; thus entire bucket

has to be searched sequentially to locate a record

©Silberschatz, Korth and Sudarshan29.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example of Hash File Organization

• There are 10 buckets
• The binary representation of the ith character is assumed to be the

integer i
• The hash function returns the sum of the binary representations of

the characters modulo 10
• E.g. h(Music) = 1 h(History) = 2

h(Physics) = 3 h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key

©Silberschatz, Korth and Sudarshan29.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

©Silberschatz, Korth and Sudarshan29.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Hash Functions

 Worst hash function maps all search-key values to the same bucket; this makes access time
proportional to the number of search-key values in the file

 An ideal hash function is uniform, i.e., each bucket is assigned the same number of search-key
values from the set of all possible values

 Ideal hash function is random, so each bucket will have the same number of records assigned
to it irrespective of the actual distribution of search-key values in the file

 Typical hash functions perform computation on the internal binary representation of the search-
key
 For example, for a string search-key, the binary representations of all the characters in the

string could be added and the sum modulo the number of buckets could be returned

©Silberschatz, Korth and Sudarshan29.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Handling of Bucket Overflows

 Bucket overflow can occur because of
 Insufficient buckets
 Skew in distribution of records. This can occur due to two reasons:

multiple records have same search-key value
 chosen hash function produces non-uniform distribution of key values

 Although the probability of bucket overflow can be reduced, it cannot be eliminated
 it is handled by using overflow buckets

©Silberschatz, Korth and Sudarshan29.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are chained together in a linked list
 Above scheme is called closed hashing

 An alternative, called open hashing, which does not use overflow buckets, is not suitable for
database applications

©Silberschatz, Korth and Sudarshan29.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Hash Indices

 Hashing can be used not only for file organization, but also for index-structure creation
 A hash index organizes the search keys, with their associated record pointers, into a hash file

structure
 Strictly speaking, hash indices are always secondary indices

 if the file itself is organized using hashing, a separate primary hash index on it using the
same search-key is unnecessary

 However, we use the term hash index to refer to both secondary index structures and hash
organized files

©Silberschatz, Korth and Sudarshan29.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example of Hash Index

• Hash index on instructor, on attribute ID
• Computed by adding the digits modulo 8

©Silberschatz, Korth and Sudarshan29.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deficiencies of Static Hashing

 In static hashing, function h maps search-key values to a fixed set of B of bucket addresses.
Databases grow or shrink with time
 If initial number of buckets is too small, and file grows, performance will degrade due to too

much overflows
 If space is allocated for anticipated growth, a significant amount of space will be wasted

initially (and buckets will be underfull).
 If database shrinks, again space will be wasted

 One solution: periodic re-organization of the file with a new hash function
 Expensive, disrupts normal operations

 Better solution: allow the number of buckets to be modified dynamically

©Silberschatz, Korth and Sudarshan29.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

DYNAMIC HASHING

PPD

• Static Hashing
• Dynamic Hashing
• Comparison of

Ordered Indexing
and Hashing

• Bitmap Indices

©Silberschatz, Korth and Sudarshan29.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Dynamic Hashing

 Good for database that grows and shrinks in size
 Allows the hash function to be modified dynamically
 Extendable hashing – one form of dynamic hashing

 Hash function generates values over a large range — typically b-bit integers, with b = 32
 At any time use only a prefix of the hash function to index into a table of bucket addresses
 Let the length of the prefix be i bits, 0 ≤ i ≤ 32

 Bucket address table size = 2i. Initially i = 0
 Value of i grows and shrinks as the size of the database grows and shrinks

 Multiple entries in the bucket address table may point to a bucket (why?)

 Thus, actual number of buckets is < 2i

 The number of buckets also changes dynamically due to coalescing and splitting of buckets

©Silberschatz, Korth and Sudarshan29.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

General Extendable Hash Structure

In this structure, i2 = i3 = i, whereas i1 = i – 1

Decode ij number of bits to find the record in bucket j. ij <= i.

PPD

©Silberschatz, Korth and Sudarshan29.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Use of Extendable Hash Structure

 Each bucket j stores a value ij
 All the entries that point to the same bucket have the same values on the first ij bits

 To locate the bucket containing search-key Kj

 Compute h(Kj) = X
 Use the first i high order bits of X as a displacement into bucket address table, and follow the

pointer to appropriate bucket
 To insert a record with search-key value Kj

 Follow same procedure as look-up and locate the bucket, say j
 If there is room in the bucket j insert record in the bucket
 Else the bucket must be split and insertion re-attempted (next slide)

 Overflow buckets used instead in some cases (will see shortly)

©Silberschatz, Korth and Sudarshan29.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Insertion in Extendable Hash Structure (Cont)

 If i > ij (more than one pointer to bucket j)
 Allocate a new bucket z, and set ij = iz = (ij + 1)
 Update the second half of the bucket address table entries originally pointing to j, to point to z
 Remove each record in bucket j and reinsert (in j or z)
 Recompute new bucket for Kj and insert record in the bucket (further splitting is required if the

bucket is still full)
 If i = ij (only one pointer to bucket j)

 If i reaches some limit b, or too many splits have happened in this insertion, create an
overflow bucket

 Else
 Increment i and double the size of the bucket address table
 Replace each entry in the table by two entries that point to the same bucket
 Recompute new bucket address table entry for Kj. Now i > ij so use the first case above

To split a bucket j when inserting record with search-key value Kj

©Silberschatz, Korth and Sudarshan29.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Deletion in Extendable Hash Structure

 To delete a key value,
 locate it in its bucket and remove it
 The bucket itself can be removed if it becomes empty (with appropriate updates to the

bucket address table)
 Coalescing of buckets can be done (can coalesce only with a “buddy” bucket having same

value of ij and same ij –1 prefix, if it is present)
 Decreasing bucket address table size is also possible

 Note: decreasing bucket address table size is an expensive operation and should be
done only if number of buckets becomes much smaller than the size of the table

©Silberschatz, Korth and Sudarshan29.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Use of Extendable Hash Structure: Example

©Silberschatz, Korth and Sudarshan29.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)

 Initial Hash structure; bucket size = 2

 Insert “Mozart”, “Srinivasan”, and “Wu” records

©Silberschatz, Korth and Sudarshan29.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)

 Hash structure after insertion of “Mozart”, “Srinivasan”,
and “Wu” records

 Insert Einstein record

©Silberschatz, Korth and Sudarshan29.24Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)

 Hash structure after insertion of Einstein record

 Insert Gold and El Said records

©Silberschatz, Korth and Sudarshan29.25Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)

 Hash structure after insertion of Gold and El Said records

 Insert Katz record

©Silberschatz, Korth and Sudarshan29.26Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)
 Hash structure after insertion of Katz record

 Insert Singh, Califieri, Crick,
Brandt record

©Silberschatz, Korth and Sudarshan29.27Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)

 Hash structure after insertion of Singh,
Califieri, Crick, Brandt records

 Insert Kim record

©Silberschatz, Korth and Sudarshan29.28Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Example (Cont.)

 Hash structure after insertion
of Kim record

©Silberschatz, Korth and Sudarshan29.29Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Extendable Hashing vs. Other Schemes

 Benefits of extendable hashing:
 Hash performance does not degrade with growth of file
 Minimal space overhead

 Disadvantages of extendable hashing
 Extra level of indirection to find desired record
 Bucket address table may itself become very big (larger than memory)

Cannot allocate very large contiguous areas on disk either
Solution: B+-tree structure to locate desired record in bucket address table

 Changing size of bucket address table is an expensive operation
 Linear hashing is an alternative mechanism

 Allows incremental growth of its directory (equivalent to bucket address table)
 At the cost of more bucket overflows

©Silberschatz, Korth and Sudarshan29.30Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

COMPARATIVE SCHEMES

PPD

• Static Hashing
• Dynamic Hashing
• Comparison of

Ordered Indexing
and Hashing

• Bitmap Indices

©Silberschatz, Korth and Sudarshan29.31Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Comparison of Ordered Indexing and Hashing

 Cost of periodic re-organization
 Relative frequency of insertions and deletions
 Is it desirable to optimize average access time at the expense of worst-case access time?
 Expected type of queries:

 Hashing is generally better at retrieving records having a specified value of the key
 If range queries are common, ordered indices are to be preferred

 In practice:
 PostgreSQL supports hash indices, but discourages use due to poor performance
 Oracle supports static hash organization, but not hash indices
 SQLServer supports only B+-trees

©Silberschatz, Korth and Sudarshan29.32Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

BITMAP INDICES

PPD

• Static Hashing
• Dynamic Hashing
• Comparison of

Ordered Indexing
and Hashing

• Bitmap Indices

©Silberschatz, Korth and Sudarshan29.33Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Bitmap Indices

 Bitmap indices are a special type of index designed for efficient querying on multiple keys
 Records in a relation are assumed to be numbered sequentially from, say, 0

 Given a number n it must be easy to retrieve record n
Particularly easy if records are of fixed size

 Applicable on attributes that take on a relatively small number of distinct values
 E.g. gender, country, state, …
 E.g. income-level (income broken up into a small number of levels such as 0-9999,

10000-19999, 20000-50000, 50000- infinity)
 A bitmap is simply an array of bits

©Silberschatz, Korth and Sudarshan29.34Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Bitmap Indices (Cont.)

 In its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute
 Bitmap has as many bits as records
 In a bitmap for value v, the bit for a record is 1 if the record has the value v for the attribute,

and is 0 otherwise

©Silberschatz, Korth and Sudarshan29.35Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Bitmap Indices (Cont.)

 Bitmap indices are useful for queries on multiple attributes
 not particularly useful for single attribute queries

 Queries are answered using bitmap operations
 Intersection (and)
 Union (or)
 Complementation (not)

 Each operation takes two bitmaps of the same size and applies the operation on corresponding
bits to get the result bitmap
 E.g. 100110 AND 110011 = 100010

100110 OR 110011 = 110111
NOT 100110 = 011001

 Males with income level L1: 10010 AND 10100 = 10000
 Can then retrieve required tuples
 Counting number of matching tuples is even faster

©Silberschatz, Korth and Sudarshan29.36Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Bitmap Indices (Cont.)

 Bitmap indices generally very small compared with relation size
 E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space used by relation

 If number of distinct attribute values is 8, bitmap is only 1% of relation size
 Deletion needs to be handled properly

 Existence bitmap to note if there is a valid record at a record location
 Needed for complementation

 not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
 Should keep bitmaps for all values, even null value

 To correctly handle SQL null semantics for NOT(A=v):
 intersect above result with (NOT bitmap-A-Null)

©Silberschatz, Korth and Sudarshan29.37Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Efficient Implementation of Bitmap Operations

 Bitmaps are packed into words; a single word and (a basic CPU instruction) computes and of
32 or 64 bits at once
 E.g. 1-million-bit maps can be and-ed with just 31,250 instruction

 Counting number of 1s can be done fast by a trick:
 Use each byte to index into a precomputed array of 256 elements each storing the count of

1s in the binary representation
 Can use pairs of bytes to speed up further at a higher memory cost

 Add up the retrieved counts
 Bitmaps can be used instead of Tuple-ID lists at leaf levels of B+-trees, for values that have a

large number of matching records
 Worthwhile if > 1/64 of the records have that value, assuming a tuple-id is 64 bits
 Above technique merges benefits of bitmap and B+-tree indices

©Silberschatz, Korth and Sudarshan29.38Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Explored various hashing schemes – Static and Dynamic Hashing
 Compared Ordered Indexing and Hashing
 Studies the use of Bitmap Indices for fast access of columns with limited number of distinct values

©Silberschatz, Korth and Sudarshan29.39Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

http://db-book.com/

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Database Management Systems

Partha Pratim Das
Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan

Gurunath Reddy M

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

www.db-book.com

Module 30: Indexing and Hashing/5:
Index Design

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan30.2Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Recap

 Static Hashing
 Dynamic Hashing
 Comparison of Ordered Indexing and Hashing
 Bitmap Indices

PPD

©Silberschatz, Korth and Sudarshan30.3Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Objectives

 To discuss how Indexes can be created in SQL
 To deliberate on good index designs in terms of Guidelines for Indexing

PPD

©Silberschatz, Korth and Sudarshan30.4Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Outline

 Index Definition in SQL
 Guidelines for Indexing

PPD

©Silberschatz, Korth and Sudarshan30.5Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

INDEX DEFINITION IN SQL

PPD

• Index Definition in
SQL

• Guidelines for
Indexing

©Silberschatz, Korth and Sudarshan30.6Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Index Definition in SQL

 Create an index
create index <index-name> on <relation-name>

(<attribute-list>)
E.g.: create index b-index on branch(branch_name)

 Use create unique index to indirectly specify and enforce the condition that the search key is a
candidate key
 Not really required if SQL unique integrity constraint is supported – it is preferred

 To drop an index
drop index <index-name>

 Most database systems allow specification of type of index, and clustering
 You can also create an index for a cluster
 You can create a composite index on multiple columns up to a maximum of 32 columns

 A composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block

PPD

©Silberschatz, Korth and Sudarshan30.7Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Indexing Examples

 Create an index for a single column, to speed up queries that test that column:
 CREATE INDEX emp_ename ON emp_tab(ename);

 Specify several storage settings explicitly for the index:
 CREATE INDEX emp_ename ON emp_tab(ename)

TABLESPACE users STORAGE (INITIAL 20K NEXT 20k PCTINCREASE 75)
PCTFREE 0 COMPUTE STATISTICS;

 Create index on two columns, to speed up queries that test either the first column or both columns:
 CREATE INDEX emp_ename ON emp_tab(ename, empno) COMPUTE STATISTICS;

 If a query is going to sort on the function UPPER(ENAME), an index on the ENAME column itself would
not speed up this operation, and it might be slow to call the function for each result row
 A function-based index precomputes the result of the function for each column value, speeding up

queries that use the function for searching or sorting:
 CREATE INDEX emp_upper_ename ON emp_tab(UPPER(ename)) COMPUTE STATISTICS;

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.8Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Bitmap Index in SQL

 create bitmap index <index-name> on <relation-name>(<attribute-list>)
 Example:

 Student (Student_ID, Name, Address, Age, Gender, Semester)
 CREATE BITMAP INDEX Idx_Gender ON Student (Gender);
 CREATE BITMAP INDEX Idx_ Semester ON Student (Semester);

 SELECT * FROM Student WHERE Gender = ‘F’ AND Semester =4;
 AND 0 1 1 1 with 0 0 0 1 to get the result

PPD

Source: https://www.tutorialcup.com/dbms/bitmap-indices.htm

©Silberschatz, Korth and Sudarshan30.9Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Multiple-Key Access

 Use multiple indices for certain types of queries
 Example:

select ID
from instructor
where dept_name = “Finance” and salary = 80000

 Possible strategies for processing query using indices on single attributes:
 Use index on dept_name to find instructors with department name Finance; test

salary = 80000
 Use index on salary to find instructors with a salary of 80000; test dept_name =

“Finance”
 Use dept_name index to find pointers to all records pertaining to the “Finance”

department. Similarly use index on salary. Take intersection of both sets of
pointers obtained

©Silberschatz, Korth and Sudarshan30.10Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Indices on Multiple Keys

 Composite search keys are search keys containing more than one attribute
 E.g. (dept_name, salary)

 Lexicographic ordering: (a1, a2) < (b1, b2) if either
 a1 < b1, or
 a1=b1 and a2 < b2

©Silberschatz, Korth and Sudarshan30.11Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Indices on Multiple Attributes

 With the where clause
where dept_name = “Finance” and salary = 80000

the index on (dept_name, salary) can be used to fetch only records that satisfy both conditions.
 Using separate indices in less efficient — we may fetch many records (or pointers) that satisfy

only one of the conditions
 Can also efficiently handle

where dept_name = “Finance” and salary < 80000
 But cannot efficiently handle

where dept_name < “Finance” and balance = 80000
 May fetch many records that satisfy the first but not the second condition

Suppose we have an index on combined search-key
(dept_name, salary)

©Silberschatz, Korth and Sudarshan30.12Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Privileges Required to Create an Index

 When using indexes in an application, you might need to request that the DBA grant privileges
or make changes to initialization parameters

 To create a new index
 You must own, or have the INDEX object privilege for, the corresponding table
 The schema that contains the index must also have a quota for the tablespace intended to

contain the index, or the UNLIMITED TABLESPACE system privilege
 To create an index in another user's schema, you must have the CREATE ANY INDEX

system privilege
 Function-based indexes also require the QUERY_REWRITE privilege, and that the

QUERY_REWRITE_ENABLED initialization parameter to be set to TRUE

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.13Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

GUIDELINES FOR INDEXING

PPD

• Index Definition in
SQL

• Guidelines for
Indexing

©Silberschatz, Korth and Sudarshan30.14Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing
 In Modules 16 to 20 (Week 4), we have studied various issues for a proper design of a relational

database system. This focused on:
 Normalization of Tables leading to

 Reduction of Redundancy to minimize possibilities of Anomaly
 Easier adherence to constraints (various dependencies)
 Efficiency of access and update – a better normalized design often gives better performance

 The performance of a database system, however, is also significantly impacted by the way the data is
physically organized and managed. These are done through:
 Indexing and Hashing

 While normalization and design are startup time activities that are usually performed once at the
beginning (and rarely changed later), the performance behavior continues to evolve as the database
is used over time. Hence we need to continually:
 Collect statistics about data (of various tables) to learn of the patterns, and
 Adjust the indexes on the tables to optimize performance

 There is no sound theory that determines optimal performance. Rather, we take a quick look into a
few common guidelines that can help you keep your database agile in its behavior

PPD

©Silberschatz, Korth and Sudarshan30.15Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing

 Rule 0: Indexes lead to Access – Update Tradeoff
 Every query (access) results in a ‘search’ on the underlying physical data structures

 Having specific index on search field can significantly improve performance
 Every update (insert / delete / values update) results in update of the index files – an

overhead or penalty for quicker access
 Having unnecessary indexes can cause significant degradation of performance of

various operations
 Index files may also occupy significant space on your disk and / or
 Cause slow behavior due to memory limitations during index computations

 Use informed judgment to index!

©Silberschatz, Korth and Sudarshan30.16Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing

 Rule 1: Index the Correct Tables
 Create an index if you frequently want to retrieve less than 15% of the rows in a large table

 The percentage varies greatly according to the relative speed of a table scan and how
clustered the row data is about the index key
– The faster the table scan, the lower the percentage
– More clustered the row data, the higher the percentage

 Index columns used for joins to improve performance on joins of multiple tables
 Primary and unique keys automatically have indexes, but you might want to create an index

on a foreign key
 Small tables do not require indexes

 If a query is taking too long, then the table might have grown from small to large

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.17Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing
 Rule 2: Index the Correct Columns

 Columns with one or more of the following characteristics are candidates for indexing:
 Values are relatively unique in the column
 There is a wide range of values (good for regular indexes)
 There is a small range of values (good for bitmap indexes)
 The column contains many nulls, but queries often select all rows having a value. In this

case, a comparison that matches all the non-null values, such as:
– WHERE COL_X > -9.99 *power(10,125) is preferable to WHERE COL_X IS NOT NULL
– This is because the first uses an index on COL_X (if COL_X is a numeric column)

 Columns with the following characteristics are less suitable for indexing:
 There are many nulls in the column and you do not search on the non-null values
 LONG and LONG RAW columns cannot be indexed

 The size of a single index entry cannot exceed roughly one-half (minus some overhead) of the
available space in the data block

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.18Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing

 Rule 3: Limit the Number of Indexes for Each Table
 The more indexes, the more overhead is incurred as the table is altered

When rows are inserted or deleted, all indexes on the table must be updated
When a column is updated, all indexes on the column must be updated

 You must weigh the performance benefit of indexes for queries against the performance
overhead of updates
 If a table is primarily read-only, you might use more indexes; but, if a table is heavily

updated, you might use fewer indexes

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.19Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing

 Rule 4: Choose the Order of Columns in Composite Indexes
 The order of columns in the CREATE INDEX statement can affect performance

 Put the column expected to be used most often first in the index
 You can create a composite index (using several columns), and the same index

can be used for queries that reference all of these columns, or just some of them
 For the VENDOR_PARTS table, assume that there are 5 vendors, and each vendor

has about 1000 parts. Suppose VENDOR_PARTS is commonly queried as:
 SELECT * FROM vendor_parts WHERE part_no = 457 AND vendor_id = 1012;
 Create a composite index with the most selective (with most values) column first

– CREATE INDEX ind_vendor_id ON vendor_parts (part_no, vendor_id);
 Composite indexes speed up queries that use the leading portion of the index:

 So queries with WHERE clauses using only PART_NO column also runs faster
With only 5 distinct values, a separate index on VENDOR_ID does not help

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.20Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing

 Rule 5: Gather Statistics to Make Index Usage More Accurate
 The database can use indexes more effectively when it has statistical information about the

tables involved in the queries
 Gather statistics when the indexes are created by including the keywords COMPUTE

STATISTICS in the CREATE INDEX statement
 As data is updated and the distribution of values changes, periodically refresh the

statistics by calling procedures like (in Oracle):
– DBMS_STATS.GATHER_TABLE_STATISTICS and
– DBMS_STATS.GATHER_SCHEMA_STATISTICS

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.21Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Guidelines for Indexing

 Rule 6: Drop Indexes That Are No Longer Required
 You might drop an index if:

 It does not speed up queries. The table might be very small, or there might be many
rows in the table but very few index entries

 The queries in your applications do not use the index
 The index must be dropped before being rebuilt

 When you drop an index, all extents of the index's segment are returned to the containing
tablespace and become available for other objects in the tablespace

 Use the SQL command DROP INDEX to drop an index. For example, the following
statement drops a specific named index:
 DROP INDEX Emp_ename;

 If you drop a table, then all associated indexes are dropped
 To drop an index, the index must be contained in your schema or you must have the DROP

ANY INDEX system privilege

PPD

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

©Silberschatz, Korth and Sudarshan30.22Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Module Summary

 Learnt to create Indexes in SQL
 Introduced a few rules for good index

©Silberschatz, Korth and Sudarshan30.23Database System Concepts - 6th Edition

SW
AY

AM
: N

PT
EL

-N
O

C
 M

O
O

C
s

In
st

ru
ct

or
: P

ro
f.

P
P

D
as

, I
IT

 K
ha

ra
gp

ur
. J

an
-A

pr
, 2

01
8

Instructor and TAs

Name Mail Mobile
Partha Pratim Das, Instructor ppd@cse.iitkgp.ernet.in 9830030880

Srijoni Majumdar, TA majumdarsrijoni@gmail.com 9674474267

Himadri B G S Bhuyan, TA himadribhuyan@gmail.com 9438911655

Gurunath Reddy M mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from http://db-book.com/
with kind permission of the authors.

Edited and new slides are marked with “PPD”.

PPD

http://db-book.com/

	Module 26
	Module 26: Indexing and Hashing/1: �Indexing/1
	Week 05 Recap
	Module Objectives
	Module Outline
	Basic Concepts of Indexing
	Search Records
	Basic Concepts
	Index Evaluation Metrics
	Ordered Indices
	Ordered Indices
	Dense Index Files
	Dense Index Files (Cont.)
	Sparse Index Files
	Sparse Index Files (Cont.)
	Secondary Indices Example
	Primary and Secondary Indices
	Multilevel Index
	Multilevel Index (Cont.)
	Index Update: Deletion
	Index Update: Insertion
	Secondary Indices
	Module Summary
	Instructor and TAs

	Module 27
	Module 27: Indexing and Hashing/2: �Indexing/2
	Module Recap
	Module Objectives
	Module Outline
	Balanced Binary Search Trees
	Search Data Structures
	Search Data Structures
	Balanced Binary Search Trees
	2-3-4 Tree
	2-3-4 Trees
	2-3-4 Trees
	2-3-4 Trees: Search
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Delete
	2-3-4 Trees
	2-3-4 Trees
	Module Summary
	Instructor and TAs

	Module 28
	Module 28: Indexing and Hashing/3: �Indexing/3
	Module Recap
	Module Objectives
	Module Outline
	B+-Tree Index Files
	B+-Tree Index Files
	Example of B+-Tree
	B+-Tree Index Files (Cont.)
	B+-Tree Node Structure
	Leaf Nodes in B+-Trees
	Non-Leaf Nodes in B+-Trees
	Example of B+-tree
	Observations about B+-trees
	Queries on B+-Trees
	Handling Duplicates
	Handling Duplicates
	Queries on B+-Trees (Cont.)
	Updates on B+-Trees: Insertion
	Updates on B+-Trees: Insertion (Cont.)
	B+-Tree Insertion
	B+-Tree Insertion
	Insertion in B+-Trees (Cont.)
	Examples of B+-Tree Deletion
	Examples of B+-Tree Deletion (Cont.)
	Example of B+-tree Deletion (Cont.)
	Updates on B+-Trees: Deletion
	Updates on B+-Trees: Deletion
	B+-Tree File Organization
	B+-Tree File Organization (Cont.)
	Other Issues in Indexing
	Indexing Strings
	B-Tree Index Files
	B-Tree Index Files
	B-Tree Index File Example
	B-Tree Index Files (Cont.)
	Module Summary
	Instructor and TAs

	Module 29
	Module 29: Indexing and Hashing/4: �Hashing
	Module Recap
	Module Objectives
	Module Outline
	Static Hashing
	Static Hashing
	Example of Hash File Organization
	Example of Hash File Organization
	Hash Functions
	Handling of Bucket Overflows
	Handling of Bucket Overflows (Cont.)
	Hash Indices
	Example of Hash Index
	Deficiencies of Static Hashing
	Dynamic Hashing
	Dynamic Hashing
	General Extendable Hash Structure
	Use of Extendable Hash Structure
	Insertion in Extendable Hash Structure (Cont)
	Deletion in Extendable Hash Structure
	Use of Extendable Hash Structure: Example
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Extendable Hashing vs. Other Schemes
	Comparative Schemes
	Comparison of Ordered Indexing and Hashing
	Bitmap Indices
	Bitmap Indices
	Bitmap Indices (Cont.)
	Bitmap Indices (Cont.)
	Bitmap Indices (Cont.)
	Efficient Implementation of Bitmap Operations
	Module Summary
	Instructor and TAs

	Module 30
	Module 30: Indexing and Hashing/5: �Index Design
	Module Recap
	Module Objectives
	Module Outline
	Index definition in SQL
	Index Definition in SQL
	Indexing Examples
	Bitmap Index in SQL
	Multiple-Key Access
	Indices on Multiple Keys
	Indices on Multiple Attributes
	Privileges Required to Create an Index
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Module Summary
	Instructor and TAs

