Database Management Systems

Module 26: Indexing and Hashing/1:
Indexing/1

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan
Gurunath Reddy M

Database System Concepts, 6! Ed.
©Silberschatz, Korth and Sudarshan

http://www.db-book.com/

PPD

Week 05 Recap

[ee]

S = Module 21: Application Design and = Module 24: Storage and File Structure/l
3% Development/1 (Storage)

E Application Programs and User Interfaces Overview of Physical Storage Media
= Web Fundamentals Magnetic Disks

S Servlets and JSP RAID

= = Module 22: Application Design and Tertiary Storage

% Development/2 = Module 25: Storage and File Structure/2 (File
0. Application Architectures Structure)

S Rapid Application Development File Organization

'-15- Application Performance Organization of Records in Files

g Application Security Data-Dictionary Storage

2 Mobile Apps Storage Access

§ = Module 23: Application Design and

= Development/3

9, Case Studies of Database Applications

3

Z

=

<

X

=

n

Database System Concepts - 6! Edition 26.2 ©Silberschatz, Korth and Sudarshan

PPD

Module Objectives

® To understand the reasons for which we need to index database table
® To learn about the ordered indexes and Indexed Sequential Access Mechanism

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.3 ©Silberschatz, Korth and Sudarshan

PPD

Module Qutline

®m Basic Concepts of Indexing
® Ordered Indices

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.4 ©Silberschatz, Korth and Sudarshan

PPD

 Basic Concepts of
Indexing
e Ordered Indices

BASIC CONCEPTS OF INDEXING

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.5 ©Silberschatz, Korth and Sudarshan

PPD

Search Records

m Consider a table: Faculty(Name, Phone)

Index on "Name" Table "Faculty" Index on "Phone"
Name Pointer Rec # Name Phone Pointer Phone

Anupam Basu 2 1Partha Pratim Das 81998 6 81664
Pabitra Mitra 6 2Anupam Basu 82404 1 81998
Partha Pratim Das 1 3Ranjan Sen 84624 2 82404
Prabir Kumar Biswas 7 4Sudeshna Sarkar 82432 4 82432
Rajib Mall 5 5Rajib Mall 83668 5 83668
Ranjan Sen 3 6Pabitra Mitra 81664 3 84624
Sudeshna Sarkar 4 7Prabir Kumar Biswas 84772 7 84772

® How to search on Name?
Get the phone number for ‘Pabitra Mitra’
Use “Name” Index — sorted on ‘Name’, search ‘Pabitra Mitra’ and navigate on pointer (rec #)
®m How to search on Phone?
Get the name of the faculty having phone number = 84772
Use “Phone” Index — sorted on ‘Phone’, search ‘84772 and navigate on pointer (rec #)
® We can keep the records sorted on ‘Name’ or on ‘Phone’ (called the primary index), but not on both

WAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

S

Database System Concepts - 61" Edition 26.6 ©Silberschatz, Korth and Sudarshan

Basic Concepts

® Indexing mechanisms used to speed up access to desired data.
For example:
» Name in a faculty table
» author catalog in library
m Search Key - attribute to set of attributes used to look up records in a file
B Anindex file consists of records (called index entries) of the form

search-key | pointer

Index files are typically much smaller than the original file

® Two basic kinds of indices:

Ordered indices: search keys are stored in sorted order

Hash indices: search keys are distributed uniformly across “buckets” using a “hash function”

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018
N

Database System Concepts - 6! Edition 26.7 ©Silberschatz, Korth and Sudarshan

Index Evaluation Metrics

m Access types supported efficiently. For example,
records with a specified value in the attribute, or
records with an attribute value falling in a specified range of values
Access time
Insertion time
Deletion time

Space overhead

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.8 ©Silberschatz, Korth and Sudarshan

PPD

» Basic Concepts of
Indexing
 Ordered Indices

ORDERED INDICES

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.9 ©Silberschatz, Korth and Sudarshan

Ordered Indices

B In an ordered index, index entries are stored sorted on the search key value. For example, author
catalog in library

® Primary index: in a sequentially ordered file, the index whose search key specifies the sequential
order of the file

Also called clustering index
The search key of a primary index is usually but not necessarily the primary key

B Secondary index: an index whose search key specifies an order different from the sequential order
of the file

Also called non-clustering index
® Index-sequential file: ordered sequential file with a primary index

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 26.10 ©Silberschatz, Korth and Sudarshan

— e
W - =
2 e >

10101

Dense Index Files

-~
r o

®m E.g. index on ID attribute of instructor relation

® Dense index — Index record appears for every search-key value in the file.

12121

-
-

15151

22222

-
o

-
o

32343

Y

33456

Y

45565

Y

58583

Y

76543

76766

Y

Y

83821

98345

Y

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition

Y

10101 |[Srinivasan | Comp. Sci. | 65000
12121 |[Wu Finance 90000
15151 |Mozart Music 40000
22222 | Einstein Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci. | 75000
58583 | Califieri History 62000
76543 |Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. | 80000

J AVAVAVAVAVAVAVAVAVAVAY

26.11

©Silberschatz, Korth and Sudarshan

/' |
| ,

I

iz

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Dense Index Files (Cont.)

® Dense index on dept_name, with instructor file sorted on dept_name

Biology ~ 76766 | Crick Biology 72000 1
Comp. Sci. ~ 10101 | Srinivasan| Comp. Sci. | 65000 -
Elec. Eng. N 45565 | Katz Comp. Sci. | 75000 |
Finance \\ 83821 | Brandt | Comp.Sci. | 92000 | -
History \\ 98345 | Kim Elec. Eng. | 80000 |
Music \ 12121 | Wu Finance 90000
Physics \\\ 76543 | Singh Finance 80000 |
32343 | El Said History 60000 }
58583 | Califieri History 62000 |
15151 | Mozart Music 40000 i
22222 | Einstein | Physics 95000 |
33465 | Gold Physics 87000 | __

Database System Concepts - 6! Edition

26.12

INRKRRRRRRAN

©Silberschatz, Korth and Sudarshan

10101

Sparse Index Files

® To locate a record with search-key value K we:
Find index record with largest search-key value < K

B Sparse Index: contains index records for only some search-key values.
Applicable when records are sequentially ordered on search-key

Search file sequentially starting at the record to which the index record points

32343

76766

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

L
o

10101

Srinivasan

Comp. Sci.

65000

12121 |Wu Finance 90000
15151 |Mozart Music 40000
22222 |Einstein | Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci.| 75000
58583 |Califieri | History 62000
76543 |Singh Finance 80000
76766 | Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. | 80000

26.13

J AVAVAVAVAVAVAVAVAVAVAV

©Silberschatz, Korth and Sudarshan

Sparse Index Files (Cont.)

m Compared to dense indices:
Less space and less maintenance overhead for insertions and deletions
Generally slower than dense index for locating records

m Good tradeoff: sparse index with an index entry for every block in file, corresponding to least
search-key value in the block

Y

data
) \ block 0

data
block 1

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.14 ©Silberschatz, Korth and Sudarshan

Secondary Indices Example

40000

60000

62000

65000

72000

75000

80000

87000

90000

92000

95000

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition

10101 | Srinivasan | Comp. Sci. | 65000 o
12121 | Wu Finance 90000 —
15151 | Mozart Music 40000 —
22222 | Einstein | Physics 95000 -
32343 | El Said History 60000]
33456 | Gold Physics 87000]
45565 |Katz Comp. Sci. | 75000 —
58583 | Califieri | History 62000 —
76543 | Singh Finance 80000 —
76766 | Crick Biology 72000 —
83821 |Brandt Comp. Sci. | 92000 —
98345 | Kim Elec. Eng. | 80000

AR

/TN

Secondary index on salary field of instructor

B Secondary indices have to be dense

26.15

},

® Index record points to a bucket that contains pointers to all the actual records with that
particular search-key value.

©Silberschatz, Korth and Sudarshan

— -_J‘
i I

Primary and Secondary Indices

® Indices offer substantial benefits when searching for records

B BUT: Updating indices imposes overhead on database modification --when a file is
modified, every index on the file must be updated

B Sequential scan using primary index is efficient, but a sequential scan using a
secondary index is expensive

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus about 100 nanoseconds for
memory access

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 26.16 ©Silberschatz, Korth and Sudarshan

Multilevel Index

If primary index does not fit in memory, access becomes expensive

B Solution: treat primary index kept on disk as a sequential file and construct a sparse
index on it

outer index — a sparse index of primary index
iInner index — the primary index file

m If even outer index is too large to fit in main memory, yet another level of index can be
created, and so on

® Indices at all levels must be updated on insertion or deletion from the file

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 26.17 ©Silberschatz, Korth and Sudarshan

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

Multilevel Index (Cont.)

—

outer index

index

block 0

index
block 1

Inner index

—

26.18

data
block 0

data
lock 1

©Silberschatz, Korth and Sudarshan

Index Update: Deletion

m Single-level index entry deletion:

Sparse indices —

instead of being replaced

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition

10101 > 10101 |Srinivasan| Comp. Sci.| 65000 -

32343 | N 12121 |Wu Finance 90000 4

76766 | \ 15151 |Mozart | Music 40000 1

22222 |Einstein | Physics 95000 -

m [f deleted record was the only 0% (Eloaid | History | 60000 | -

. : cy \ 33456 |Gold Physics 87000 -
record in the file with its particular 45565 |Katz Comp. Sci.| 75000

search-key value, the search-key 58583 |Califieri | History | 62000 | -

. - 76543 |Singh Finance 80000 -

Is deleted from the index also. e Biology | 72000 | 1

83821 |Brandt Comp. Sci.| 92000 -

98345 |Kim Elec. Eng. | 80000 il

26.19

vavvvvvvvvv

Dense indices — deletion of search-key is similar to file record deletion

» If an entry for the search key exists in the index, it is deleted by replacing the
entry in the index with the next search-key value in the file (in search-key order)

» If the next search-key value already has an index entry, the entry is deleted

©Silberschatz, Korth and Sudarshan

Index Update: Insertion

B Single-level index insertion:
Perform a lookup using the search-key value appearing in the record to be inserted
Dense indices — if the search-key value does not appear in the index, insert it

Sparse indices — if index stores an entry for each block of the file, no change
needs to be made to the index unless a new block is created

If a new block is created, the first search-key value appearing in the new block
IS inserted into the index

m Multilevel insertion and deletion: algorithms are simple extensions of the single-
level algorithms

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 26.20 ©Silberschatz, Korth and Sudarshan

Secondary Indices

® Frequently, one wants to find all the records whose values in a certain field (which is not
the search-key of the primary index) satisfy some condition

Example 1: In the instructor relation stored sequentially by ID, we may want to find
all instructors in a particular department

Example 2: as above, but where we want to find all instructors with a specified salary
or with salary in a specified range of values

® We can have a secondary index with an index record for each search-key value

[e6}
—
o
N
S
<
c
S
kap]
5
Q.
()]
©
<
<
¥
=
2
©
a)
o
o
S
a
S
O
=
®
k=
)
8]
o
O
=
)
O
Z
—
|
|_
o
z
S
<
Z
=
7

Database System Concepts - 6! Edition 26.21 ©Silberschatz, Korth and Sudarshan

Module Summary

m Appreciated the reasons for indexing database tables

® Understood Indexed Sequential Access Mechanism (ISAM) and associated notions of the ordered
indexes

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 26.22 ©Silberschatz, Korth and Sudarshan

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

PPD

Instructor and TAS

Name

Partha Pratim Das, Instructor
Srijoni Majumdar, TA
Himadri B G S Bhuyan, TA
Gurunath Reddy M

Mail Mobile
ppd@cse.iitkgp.ernet.in 9830030880

majumdarsrijoni@gmail.com 9674474267
himadribhuyan@gmail.com 9438911655
mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from
with kind permission of the authors.

Edited and new slides are marked with “PPD".

26.23

©Silberschatz, Korth and Sudarshan

http://db-book.com/

Database Management Systems

Module 27: Indexing and Hashing/2:
Indexing/2

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan
Gurunath Reddy M

Database System Concepts, 6! Ed.
©Silberschatz, Korth and Sudarshan

http://www.db-book.com/

PPD

Module Recap

®m Basic Concepts of Indexing
® Ordered Indices

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.2 ©Silberschatz, Korth and Sudarshan

PPD

Module Objectives

B To recap Balanced Binary Search Trees as options for optimal in-memory search data
structures and understand the issues relating to external search data structures for persistent
data

m To study 2-3-4 Tree as a precursor to B/B+-Tree for an efficient external data structure for
database and index tables

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.3 ©Silberschatz, Korth and Sudarshan

PPD

Module Qutline

m Balanced Binary Search Trees
m 2-3-4 Tree

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.4 ©Silberschatz, Korth and Sudarshan

PPD

« Balanced Binary
Search Trees
e 2-3-4Tree

BALANCED BINARY SEARCH TREES

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.5 ©Silberschatz, Korth and Sudarshan

PPD

Search Data Structures

®m How to search a key in a list of n data items?
Linear Search: O(n): Find 28 =» 16 comparisons
» Unordered items in an array — search sequentially
» Unordered / Ordered items in a list — search sequentially
22 50 20 36 40 15 08 01 45 48 30 10 38 12 25 28 05 END
Binary Search: O(log, n): Find 28 =» 4 comparisons — 25, 36, 30, 28
» Ordered items in an array — search by divide-and-conquer
01 05 08 10 12 15 20 22 25 28 30 36 38 40 45 48 50 END

» Binary Search Tree — recursively on left / right

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.6 ©Silberschatz, Korth and Sudarshan

PPD

Search Data Structures

m Worst case time (n data items in the data structure):

Data Structure Search Insert Delete Remarks

Unordered Array O(n) O(1) O(1) The time to Insert /

Ordered Array Ofogn) O(n) O() Deleteanitemis the
_ time after the location

Unordered List O(n) O(1) O(1) of the item has been

Ordered List O(n) O(1) 0O() ascertained by

Binary Search Tree O(h) O(1) O(1) Search.
m Between an array and a list, there is a trade-off between search and insert/delete complexity
® For a BST of n nodes, log n <= h <= n, where h is the height of the tree
m A BST is balanced if h ~ O(log n) — this what we desire

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.7 ©Silberschatz, Korth and Sudarshan

PPD

— -4.!
|

Balanced Binary Search Trees

=

m A BST is balanced if h ~ O(log n)
®m Balancing guarantees may be of various types:
Worst-case
» AVL Tree
Randomized
» Randomized BST, Skip List
Amortized
» Splay

B These data structures have optimal complexity for all of search, insert and delete — O(log n).
However:

Good for in memory operations

Work well for small volume of data

Has complex rotation and / or similar operations
Do not scale for external data structures

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 27.8 ©Silberschatz, Korth and Sudarshan

PPD

e Balanced Binary
Search Trees
e 2-3-4 Tree

2-3-4 TREE

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.9 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees

m All leaves are at the same depth (the bottom level).
Height, h, of all leaf nodes are same
» h~ O(log n)
» Complexity of search, insert and delete: O(h) ~ O(log n)
m All data is kept in sorted order

®m Every node (leaf or internal) is a 2-node, 3-node or a 4-node, and holds one, two, or three data
elements, respectively

B Generalizes easily to larger nodes
B Extends to external data structures

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.10 ©Silberschatz, Korth and Sudarshan

PPD

|

— -—L!

2-3-4 Trees

:

%

m Uses 3 kinds of nodes satisfying key relationships as shown below:
A 2-node must contain a single data item (S) and two links
A 3-node must contain two data items (S, L) and three links
A 4-node must contain three data items (S, M, L) and four links
A leaf may contain either one, two, or three data items

5 L
Search keys < S Search keys > S Search keys <5 Search keys > L
Search keys > 5
and < L
S M L
Search keys < S \ Search keys > L
Search keys > S and < M Search keys > M and < L

e
0
b
o
N
S
<
c
5]
kap]
S
a
=)
o
5]
<
'
=
)
@
(a)
a
o
S
o
S
3)
=
®
£
0
©)
®)
©)
=
)
®)
<
—
L
|_
o
Z
=
<
Z
=
n

Database System Concepts - 6! Edition 27.11 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Search

m Search
Simple and natural extension of search in BST

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.12 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert

m [nsert
Search to find expected location
» If it is a 2 node, change to 3 node and insert
» If it is a 3 node, change to 4 node and insert
» If it is a 4 node, split the node by moving the middle item to parent node, then insert
Node Splitting
» A 4-node is split as soon as it is encountered during a search from the root to a leaf
» The 4-node that is split will
Be the root, or
Have a 2-node parent, or
Have a 3-node parent

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.13 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert

m Splitting at Root

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.14 ©Silberschatz, Korth and Sudarshan

m Splitting with 2 Node parent

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

2-3-4 Trees: Insert

—
Q
~—

¢ e
S M L (s) (v
a b c d a b c d
(b)
() —
a a

27.15 ©Silberschatz, Korth and Sudarshan

PPD

PPD

2-3-4 Trees: Insert

m Splitting with 3 Node parent (a)
(P_2)
o f ﬁ e f
G
a b c d

a bcd

(b)
TP QT P M Q

a f ﬁ a f
S M L eo

b ¢ d e bc de
a b —> ab
olo
c d e f cdef

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.16 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

Insert 10, 30, 60, 20, 50, 40, 70, 80, 15, 90, 100
10

10, 30

10, 30, 60
Split for 20

o)
-
o
Y
S
<
c
@
=
=
o
(o)
o
G
<
X
=
%)
@
a)
(a
o
o
S
o
S
o
S
7
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.17 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

m 10, 30, 60, 20
m 10, 30, 60, 20, 50

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 27.18 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

m 10, 30, 60, 20, 50, 40
m Split for 70

o)
-
o
Y
S
<
c
@
=
=
o
(o)
o
G
<
X
=
%)
@
a)
(a
o
o
S
o
S
o
S
7
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.19 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

m 10, 30, 60, 20, 50, 40, 70
m 10, 30, 60, 20, 50, 40, 70, 80

o)
-
o
Y
S
<
c
@
=
=
o
(o)
o
G
<
X
=
%)
@
a)
(a
o
o
S
o
S
o
S
7
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.20 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

m 10, 30, 60, 20, 50, 40, 70, 80, 15
m Split for 90

o)
-
o
Y
S
<
c
@
=
=
o
(o)
o
G
<
X
=
%)
@
a)
(a
o
o
S
o
S
o
S
7
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.21 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

m 10, 30, 60, 20, 50, 40, 70, 80, 15, 90
m Split for 100

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 27.22 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Insert: Example

m 10, 30, 60, 20, 50, 40, 70, 80, 15, 90, 100

o)
-
o
Y
S
<
c
@
=
=
o
(o)
o
G
<
X
=
%)
@
a)
(a
o
o
S
o
S
o
S
7
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.23 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees: Delete

m Delete
Locate the node n that contains the item theltem
Find theltem’s inorder successor and swap it with theltem (deletion will always be at a leaf)
If that leaf is a 3-node or a 4-node, remove theltem
To ensure that theltem does not occur in a 2-node
» Transform each 2-node encountered into a 3-node or a 4-node
» Reverse different cases illustrated for splitting

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.24 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees

m Advantages
All leaves are at the same depth (the bottom level): Height, h ~ O(log n)
Complexity of search, insert and delete: O(h) ~ O(log n)
All data is kept in sorted order
Generalizes easily to larger nodes
Extends to external data structures
® Disadvantages

Uses variety of node types — need to destruct and construct multiple nodes for converting a
2 Node to 3 Node, a 3 Node to 4 Node, for splitting etc.

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 27.25 ©Silberschatz, Korth and Sudarshan

PPD

2-3-4 Trees

m Consider only one node type with space for 3 items and 4 links
Internal node (non-root) has 2 to 4 children (links)
Leaf node has 1 to 3 items
Wastes some space, but has several advantages for external data structure
B Generalizes easily to larger nodes
All paths from root to leaf are of the same length
Each node that is not a root or a leaf has between [n/2 | and n children.
A leaf node has between [(n—1)/2 | and n—1 values
Special cases:
If the root is not a leaf, it has at least 2 children.
If the root is a leaf, it can have between 0 and (n—1) values.
®m Extends to external data structures
B-Tree
2-3-4 Tree is a B-Tree where n =4

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 27.26 ©Silberschatz, Korth and Sudarshan

Module Summary

® Recapitulated the notions of Balanced Binary Search Trees as options for optimal in-memory
search data structures

® Understood the issues relating to external data structures for persistent data

m Explored 2-3-4 Tree in depth as a precursor to B/B+-Tree for an efficient external data structure
for database and index tables

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 27.27 ©Silberschatz, Korth and Sudarshan

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

PPD

Instructor and TAS

Name

Partha Pratim Das, Instructor
Srijoni Majumdar, TA
Himadri B G S Bhuyan, TA
Gurunath Reddy M

Mail Mobile
ppd@cse.iitkgp.ernet.in 9830030880

majumdarsrijoni@gmail.com 9674474267
himadribhuyan@gmail.com 9438911655
mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from
with kind permission of the authors.

Edited and new slides are marked with “PPD".

27.28

©Silberschatz, Korth and Sudarshan

http://db-book.com/

Database Management Systems

Module 28: Indexing and Hashing/3:
Indexing/3

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan
Gurunath Reddy M

Database System Concepts, 6! Ed.
©Silberschatz, Korth and Sudarshan

http://www.db-book.com/

PPD

Module Recap

®m Balanced Binary Search Trees
m 2-3-4 Tree

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.2 ©Silberschatz, Korth and Sudarshan

PPD

Module Objectives

® To understand the design of B*-Tree Index Files as a generalization of 2-3-4 Tree
® To understand the fundamentals of B-Tree Index Files

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.3 ©Silberschatz, Korth and Sudarshan

PPD

Module Qutline

m B*-Tree Index Files
B B-Tree Index Files

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.4 ©Silberschatz, Korth and Sudarshan

PPD

e B*-Tree Index Files
e B-Tree Index Files

B*-TREE INDEX FILES

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.5 ©Silberschatz, Korth and Sudarshan

B*-Tree Index Files

B*-tree indices are an alternative to indexed-sequential files

® Disadvantage of indexed-sequential files
performance degrades as file grows, since many overflow blocks get created
Periodic reorganization of entire file is required

® Advantage of B*-tree index files:

automatically reorganizes itself with small, local, changes, in the face of insertions
and deletions

Reorganization of entire file is not required to maintain performance
® (Minor) disadvantage of B*-trees:

extra insertion and deletion overhead, space overhead
B Advantages of B*-trees outweigh disadvantages

B*-trees are used extensively

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 28.6 ©Silberschatz, Korth and Sudarshan

Example of B*-Tree

Tl T T Root node

=

: E

Z [Eestan] [Ga [~] Evmal] [[] - feemalnodes

: g

k Leaf nodes-
2 |
o =3
< Brandt| [Califieri| |Crick||»] |Binstein| [E1Said] | |4 | Gold || Katz || Kim|{»] [Mozart| | Singh | | Srnivasan| [Wu || || rJ—
= s
é;

: 7

;é_ —~ 10101 | Srinivasan | Comp. 5ci. | 65000

: = 12121 | Wu Finance 40000

S — 15151 | Mozart Music 40000

= » 22222 | Einstein FPhysics 45000

= @ 32343 | El 5aid History BOODO

O » 33456 | Gold Physics 87000

g w 45565 | Katz Comp. 5ci. | 75000

9 » 585E3 | Califien History 60000

E —» 76543 | Singh Finance 50000

o = 76766 | Crick Biclogy 72000

% 83821 | Brandt Comp. 5ci. | 92000

5 L y{ 98345 | Kim Elec. Eng. | 80000

s

7

Database System Concepts - 6! Edition 28.7 ©Silberschatz, Korth and Sudarshan

B*-Tree Index Files (Cont.)

A B*-tree is a rooted tree satisfying the following properties:

All paths from root to leaf are of the same length
Each node that is not a root or a leaf has between | n/2 | and n children.
A leaf node has between [(n-1)/2 | and n-1 values

Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in the tree), it can have between
0 and (n-1) values.

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.8 ©Silberschatz, Korth and Sudarshan

B*-Tree Node Structure

m Typical node

P4 K1 Py e P, 1 K, _1 2

K; are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to records or buckets of
records (for leaf nodes).

B The search-keys in a node are ordered

(Initially assume no duplicate keys, address duplicates later)

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.9 ©Silberschatz, Korth and Sudarshan

Properties of a leaf node:

search-key value K,

than or equal to L;'s search-key values

m P, points to next leaf node in search-key order

Leaf Nodes in B*-Trees

m Fori=1,2,... n-1, pointer P, points to a file record with

m IfL, Lare leaf nodes and i <}, L’s search-key values are less

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

leaf node
|| Brandt || Califieri | | Crick |1 > Pointer to next leaf node
10101 | Srinivasan | Comp. Sci.| 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstein | Physics 95000
32343 | El Said History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci. | 75000
> 58583 | Califieri | History 60000
76543 | Singh Finance 80000
> 76766 | Crick Biology 72000
> 83821 | Brandt Comp. Sci.| 92000
98345 | Kim Elec. Eng. | 80000

28.10

Database System Concepts - 6! Edition

©Silberschatz, Korth and Sudarshan

— -_J‘
i I

with m pointers:

equal to K, _;

Non-Leaf Nodes in B*-Trees

® Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node

All the search-keys in the subtree to which P, points are less than K,

For 2 <i<n-1, all the search-keys in the subtree to which P, points have values
greater than or equal to K_, and less than K,

All the search-keys in the subtree to which P, points have values greater than or

Pq

K1

Py

Pn—l

Kn—l

Py

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition

28.11

©Silberschatz, Korth and Sudarshan

/' 1
i Y,
I

I

Example of B*-tree

Katz Kim >

Mozart

Singh

Srinivasan

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition

B*-tree for instructor file (n = 6)

28.12

Leaf nodes must have between 3 and 5 values
((n—=1)/21and n -1, with n = 6)

Non-leaf nodes other than root must have between 3
and 6 children ([(n/2]and n with n =6)

Root must have at least 2 children

©Silberschatz, Korth and Sudarshan

Observations about B*-trees

® Since the inter-node connections are done by pointers, “logically” close blocks need not
be “physically” close

B The non-leaf levels of the B*-tree form a hierarchy of sparse indices
B The B*-tree contains a relatively small number of levels
» Level below root has at least 2*[n/2 | values
» Next level has at least 2*[n/2 | *[n/2 | values
» .. efc.
If there are K search-key values in the file, the tree height is no more than | Iogrn,zq(K)_|
thus searches can be conducted efficiently

B Insertions and deletions to the main file can be handled efficiently, as the index can be
restructured in logarithmic time

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 28.13 ©Silberschatz, Korth and Sudarshan

Queries on B*-Trees

® Find record with search-key value V
C=root
While C is not a leaf node {
1. Letibe least value s.t. V <K.
2. If no such exists, set C = last non-null pointer in C
3. Else{if(V=K;)SetC =P,,, elsesetC =P}
}
Leti be least value s.t. K =V
If there is such a value i, follow pointer P; to the desired record
Else no record with search-key value k exists

L[Mozart] ||]

o

rl-Cahﬁerll |Emstem| |G0]d| I |Srm_1va5an|ll | | | |

AN

Adarms| [Brandt] | |}>| [Califieni] [Crick] | [}~ [Einstein] [E1Said] | 3] [Gold] [Katz] [Kim|3~| [Mozar{] [Singh] | |3~| [Seinivasan] [Wa] |]|

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.14 ©Silberschatz, Korth and Sudarshan

Handling Duplicates

® With duplicate search keys
In both leaf and internal nodes,
» we cannot guarantee that K, < K, < K;<...<K_,
» but can guarantee K; <K, <K;<. .. <K,
Search-keys in the subtree to which P; points
» are < K, but not necessarily < K;

» To see why, suppose same search key value V is presentin two leaf node L,
and Li,,. Then in parent node K, must be equal to V

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.15 ©Silberschatz, Korth and Sudarshan

Handling Duplicates

® We modify find procedure as follows
traverse P, even if V = K,

As soon as we reach a leaf node C check if C has only search key
values less than V

» If so set C = right sibling of C before checking whether C contains
\Y

® Procedure printAll
uses modified find procedure to find first occurrence of V
Traverse through consecutive leaves to find all occurrences of V

** Errata note: modified find procedure missing in first printing of 6t edition

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 28.16 ©Silberschatz, Korth and Sudarshan

Queries on B*Trees (Cont.)

m If there are K search-key values in the file, the height of the tree is no more than |_Iogrn,21(K)_|
® A node is generally the same size as a disk block, typically 4 kilobytes

and n is typically around 100 (40 bytes per index entry)
®m With 1 million search key values and n = 100

at most log,(1,000,000) = 4 nodes are accessed in a lookup

m Contrast this with a balanced binary tree with 1 million search key values — around 20 nodes are
accessed in a lookup

above difference is significant since every node access may need a disk 1/O, costing around
20 milliseconds

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 28.17 ©Silberschatz, Korth and Sudarshan

Updates on B*-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. If the search-key value is already present in the leaf node
Add record to the file
If necessary add a pointer to the bucket
3. If the search-key value is not present, then
Add the record to the main file (and create a bucket if necessary)
If there is room in the leaf node, insert (key-value, pointer) pair in the leaf node

Otherwise, split the node (along with the new (key-value, pointer) entry) as
discussed in the next slide

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 28.18 ©Silberschatz, Korth and Sudarshan

— -_J‘
i I

Updates on B*-Trees: Insertion (Cont.)

m Splitting a leaf node:

take the n (search-key value, pointer) pairs (including the one being inserted) in sorted
order. Place the first| n/2 | in the original node, and the rest in a new node

let the new node be p, and let k be the least key value in p. Insert (k,p) in the parent of the
node being split

If the parent is full, split it and propagate the split further up
m Splitting of nodes proceeds upwards till a node that is not full is found
In the worst case the root node may be split increasing the height of the tree by 1

Adams| |Brandt > | Califieri|,| Crick >

Voo b

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri,pointer-to-new-node) into parent

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 28.19 ©Silberschatz, Korth and Sudarshan

Bt*-Tree Insertion

@ [TMozart|| [T s Root node
Q

E: :

% |,|E1nstem| | Gold |,| —l_l |T|§im'vasan|ll | | | | Internal nodes

=S H

E_ Leaf nodes-,
g 5
<) A . U -
< Brandtlllc;ﬂjﬁeril |Crick|l-|—>|||Einstem|I|EI Saidl | H-»-lll Gold |.| Katz ||| Kiml-I-»IllMozartlll Singh | | H->-|T|§inivasan|||Wu | | | |
|: T T T T T T T T T T T T H
(m)

o

o

2

o |, [Mozart| I

S

O

=

B

@ [|catifieri] [Einstein] [Gold] | lsrinivasan| | ||]

S /

>

9

o)

Z

— . - -

'E Adams| [Brandt| | [{{ |Califieri| |Crick| [[4>| |Einstein| [E1Said| | |$~{ [Gold| [Katz| |Kim|$-{ [Mozart| [Singh|]| [+ [Srinivasan| [wu| | ||
Z

=

> B*-Tree before and after insertion of “Adams”

=

n

Database System Concepts - 6! Edition 28.20 ©Silberschatz, Korth and Sudarshan

I Mozart]] []

[[catifieri] [Einstein] [Gold[]

£\

el

Jsrinivasan] | ||]

Bt-Tree Insertion

Adams| [Brandt| | [{| |Califieri| [Crick| [[{| [Einstein| [E1 Said] |

3

[Gota] [<ete] [m3r |

[Mozart| [Singh| |

A

|Srinivasan| |Wu| | | |

|.| Gold |l|Mozart|I| Il

L

ICaliﬁeriIIIEJ‘.I'LGtei:t'LLl ” ||| Kim |I

1 [[srimivasan [[[]]

Adams | [pranat [T}

Califieri | [Crick| | [+ | Einstein | [E15aid] | || |Gold | [Katz | |

[-{ i Tcamport [T3+ ot [sngn [[]

[semvaman [l [}

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

28.21

B*-Tree before and after insertion of “Lamport”

©Silberschatz, Korth and Sudarshan

Insertion in B*-Trees (Cont.)

m Splitting a non-leaf node: when inserting (k,p) into an already full internal node N
Copy N to an in-memory area M with space for n+1 pointers and n keys
Insert (k,p) into M
Copy P,,Ky, ..., Krpa11,P 21 from M back into node N
Copy Pryoti1:Krngtirs - K Preq from M into newly allocated node N
Insert (K,,,7.N’) into parent N

B Read pseudocode in book!

/ / / Califieri \\
AdamslBrandtICaIifieri\Crick\ Adamg1 BrandtI Crick \

/A e S Y A I A

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.22 ©Silberschatz, Korth and Sudarshan

Examples of B*-Tree Deletion

||Mozart|| ||
[Tatifier] [Einstein] [Gold]] Tornivasan]] 1] 1]
Adams| [Brandt] | |} [Califieri] [Crick] | [}~] [Einstein| [E15aid] | || [Gold] [Katz] [Kim[}>| [Mozart] [Singh| | [}| [Srinivasan] [Wu] |]|

Before and after deleting “Srinivasan”

| Gold |

| Mozart .

Adams | | Brandt 1> | Califieri| | Crick -+ |Einstein| |El Said +| | Gold| | Katz | | Kim |1 Mozart| | Singh| [Wu

m Deleting “Srinivasan” causes merging of under-full leaves

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.23 ©Silberschatz, Korth and Sudarshan

Examples of B*-Tree Deletion (Cont.)

L[Goa || []

~.

| Jxim [O[]]

Califieri| |Einstein ||

Adams | [Brandt| | [+>| [Catifieri| | Crick 4> |Einstein| [E1 Said 4 |Gold| | Katz +| | Kim | | Mozart

Deletion of “Singh” and “Wu” from result of previous example

®m Leaf containing Singh and Wu became underfull, and borrowed a value Kim from its left sibling
m Search-key value in the parent changes as a result

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.24 ©Silberschatz, Korth and Sudarshan

Example of B+ tree Deletlon (Cont.)

|| Gola |] |

Califieri| [Einstein| | lxm ||] T}

ZA)

Adams| [Brandt| | || | Califieri | Crick Einstein| |El Said 1> |Gold| [Katz +>| [Kim [| Mozart

El Said 1+ |Katz | [Kim| [Mozart

Before and after deletion of “Gold” from earlier example

® Node with Gold and Katz became underfull, and was merged with its sibling
m Parent node becomes underfull, and is merged with its sibling

Value separating two nodes (at the parent) is pulled down when merging
® Root node then has only one child, and is delete

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 28.25 ©Silberschatz, Korth and Sudarshan

Updates on B*-Trees: Deletion

® Find the record to be deleted, and remove it from the main file and from the bucket (if present)

® Remove (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has
become empty

m If the node has too few entries due to the removal, and the entries in the node and a sibling fit
Into a single node, then merge siblings:

Insert all the search-key values in the two nodes into a single node (the one on the left), and
delete the other node.

Delete the pair (Ki_;, P;), where P, is the pointer to the deleted node, from its parent,
recursively using the above procedure.

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.26 ©Silberschatz, Korth and Sudarshan

Updates on B*-Trees: Deletion

m Otherwise, if the node has too few entries due to the removal, but the entries in the node and a
sibling do not fit into a single node, then redistribute pointers:

Redistribute the pointers between the node and a sibling such that both have more than the
minimum number of entries

Update the corresponding search-key value in the parent of the node
® The node deletions may cascade upwards till a node which has [n/2 | or more pointers is found
®m |[f the root node has only one pointer after deletion, it is deleted and the sole child becomes the root

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.27 ©Silberschatz, Korth and Sudarshan

B*-Tree File Organization

Index file degradation problem is solved by using B*-Tree indices
Data file degradation problem is solved by using B*-Tree File Organization
The leaf nodes in a B*-tree file organization store records, instead of pointers

Leaf nodes are still required to be half full

Since records are larger than pointers, the maximum number of records that can be stored in
a leaf node is less than the number of pointers in a non-leaf node

®m [nsertion and deletion are handled in the same way as insertion and deletion of entries in a B*-
tree index

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 28.29 ©Silberschatz, Korth and Sudarshan

B*-Tree File Organization (Cont.)

|
|

. /'i
A\
e

1!

A B8 | [HICH] 09 [(E4H{E7] (G3) [Ha)
{/ i
9] 038) KD L6) L Ma)[(NS)| (P6)

1>

Example of B*-tree File Organization

m Good space utilization important since records use more space than pointers.
® To improve space utilization, involve more sibling nodes in redistribution during splits and merges

Involving 2 siblings in redistribution (to avoid split / merge where possible) results in each
node having at least LG/3J entries

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 28.30 ©Silberschatz, Korth and Sudarshan

/' 1
i Y,
I

I

Other Issues in Indexing

® Record relocation and secondary indices
If a record moves, all secondary indices that store record pointers have to be updated
Node splits in B*-tree file organizations become very expensive
Solution: use primary-index search key instead of record pointer in secondary index
» Extra traversal of primary index to locate record
Higher cost for queries, but node splits are cheap
» Add record-id if primary-index search key is non-unique

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 28.31 ©Silberschatz, Korth and Sudarshan

— -_J‘
i I

Indexing Strings

m Variable length strings as keys

Variable fanout

Use space utilization as criterion for splitting, not number of pointers
B Prefix compression

Key values at internal nodes can be prefixes of full key

» Keep enough characters to distinguish entries in the subtrees separated by the
key value

E.g. “Silas” and “Silberschatz” can be separated by “Silb”
Keys in leaf node can be compressed by sharing common prefixes

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 28.32 ©Silberschatz, Korth and Sudarshan

PPD

e B*-Tree Index Files
e B-TreeIndex Files

B-TREE INDEX FILES

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.33 ©Silberschatz, Korth and Sudarshan

B-Tree Index Files

S m Similar to B+-tree, but B-tree allows search-key values to appear only once; eliminates redundant
i? storage of search keys

©

e m Search keys in non-leaf nodes appear nowhere else in the B-tree; an additional pointer field for
g each search key in a non-leaf node must be included

@©

§ m Generalized B-tree leaf node

§ Pl K1 P2 Pn-l Kn-l Pn

@

2 (a)

é Py | By | Ky | P, | By | Ky Ppq B Kna P,
o (b)

O

=

)

O

z

= ® Non-leaf node — pointers Bi are the bucket or file record pointers

Z

s

=

n

Database System Concepts - 6! Edition 28.34 ©Silberschatz, Korth and Sudarshan

B-Tree Index File Example

A, Einstein. Katz . Singh |

Katz Smgh
record record

: Califieri : Crick | El Said | Gold 1 | Kim | Mozart Srinivasan | Wu

N b T

Brandt Califieri
record record

... and soon for other records...

B-tree (above) and B+-tree (below) on same data

III Mozartlll | I I |< Root node
| |Einstein| | Gold | | —l_l |_I|§injvasan||| [|| Internal nodes
Leaf nodes--E
e ey
Brandt|I|Ca]jﬁeri| |Crick|l-|—>|||Einstem|I|EI Saidl | H-»-lll Gold I.l Katz ||| Kiml-l—»—lllMozartLl Singh | | |-|->-|T|§inivasan|I|Wu | | | |

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.35 ©Silberschatz, Korth and Sudarshan

"“g- B-Tree Index Files (Cont.)

=

® Advantages of B-Tree indices:

May use less tree nodes than a corresponding B*-Tree

Sometimes possible to find search-key value before reaching leaf node
® Disadvantages of B-Tree indices:

Only small fraction of all search-key values are found early

Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have greater depth
than corresponding B*-Tree

Insertion and deletion more complicated than in B*-Trees
Implementation is harder than B*-Trees
m Typically, advantages of B-Trees do not out weigh disadvantages

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 28.36 ©Silberschatz, Korth and Sudarshan

Module Summary

® Understood the design of B*-Tree Index Files in depth for database persistent store
m Familiarized with B-Tree Index Files

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 28.37 ©Silberschatz, Korth and Sudarshan

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

PPD

Instructor and TAS

Name

Partha Pratim Das, Instructor
Srijoni Majumdar, TA
Himadri B G S Bhuyan, TA
Gurunath Reddy M

Mail Mobile
ppd@cse.iitkgp.ernet.in 9830030880

majumdarsrijoni@gmail.com 9674474267
himadribhuyan@gmail.com 9438911655
mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from
with kind permission of the authors.

Edited and new slides are marked with “PPD".

28.38

©Silberschatz, Korth and Sudarshan

http://db-book.com/

oo
—
o
N
S
<
c
©
-
5
Q
<)
o
@©
<
N4
E
%)
©
(@]
o
o
.
°
o
S
2
o
S
=
0
£
0
O
®)
®)
=
O
©)
Z
—
L
|_
o
4
=
<
Z
=
n

Database Management Systems

Module 29: Indexing and Hashing/4:
Hashing

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan
Gurunath Reddy M

Database System Concepts, 6! Ed.
©Silberschatz, Korth and Sudarshan

http://www.db-book.com/

PPD

Module Recap

B B*-Tree Index Files
m B-Tree Index Files

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.2 ©Silberschatz, Korth and Sudarshan

PPD

Module Objectives

®m To explore various hashing schemes — Static and Dynamic Hashing
® To compare Ordered Indexing and Hashing
B To understand the Bitmap Indices

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.3 ©Silberschatz, Korth and Sudarshan

PPD

Module Qutline

Static Hashing
Dynamic Hashing
Comparison of Ordered Indexing and Hashing

Bitmap Indices

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.4 ©Silberschatz, Korth and Sudarshan

STATIC HASHING

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

295

Static Hashing
Dynamic Hashing
Comparison of
Ordered Indexing
and Hashing
Bitmap Indices

PPD

©Silberschatz, Korth and Sudarshan

Static Hashing

A bucket is a unit of storage containing one or more records (a bucket is typically a disk block)

In a hash file organization we obtain the bucket of a record directly from its search-key value
using a hash function

m Hash function h is a function from the set of all search-key values K to the set of all bucket
addresses B

m Hash function is used to locate records for access, insertion as well as deletion

® Records with different search-key values may be mapped to the same bucket; thus entire bucket
has to be searched sequentially to locate a record

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.6 ©Silberschatz, Korth and Sudarshan

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

« There are 10 buckets

- The binary representation of the ith character is assumed to be the
integer i

- The hash function returns the sum of the binary representations of
the characters modulo 10

E.g. h(Music) =1 h(History) = 2
h(Physics) = 3 h(Elec. Eng.) =3

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018 | /' g
Uy WY,
i Lo

Database System Concepts - 6! Edition 29.7

©Silberschatz, Korth and Sudarshan

Example of Hash File Organization

bucket 0 bucket 4
12121 | Wu Finance (90000

76543 | Singh Finance (80000

bucket 1 bucket 5
15151| Mozart | Music |40000 76766| Crick Biology |72000
bucket 2 bucket 6
32343| El1Said | History 80000 10101 |Srinivasan |Comp. Sci.[65000
58583| Califieri | History |60000 45565 |Katz Comp. 5ci.[75000

83821 [Brandt |Comp. Sci.[92000

bucket 3 bucket 7
22222| Einstein | Physics 95000
33456| Gold Physics |87000
98345| Kim Elec. Eng.|80000

Hash file organization of instructor file, using dept_name as key

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.8 ©Silberschatz, Korth and Sudarshan

Hash Functions

m Worst hash function maps all search-key values to the same bucket; this makes access time
proportional to the number of search-key values in the file

® Anideal hash function is uniform, i.e., each bucket is assigned the same number of search-key
values from the set of all possible values

®m Ideal hash function is random, so each bucket will have the same number of records assigned
to it irrespective of the actual distribution of search-key values in the file

®m Typical hash functions perform computation on the internal binary representation of the search-
key

For example, for a string search-key, the binary representations of all the characters in the
string could be added and the sum modulo the number of buckets could be returned

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.9 ©Silberschatz, Korth and Sudarshan

|

—_ -—lﬂl

Handling of Bucket Overflows

:

%

®m Bucket overflow can occur because of
Insufficient buckets
Skew in distribution of records. This can occur due to two reasons:
» multiple records have same search-key value
» chosen hash function produces non-uniform distribution of key values
®m Although the probability of bucket overflow can be reduced, it cannot be eliminated
it is handled by using overflow buckets

e
0
—
o
Y
S
<
c
©
-
S
a
)
©
@©
c
'
=
%)
@
(m)
o
o
S
o
S
3)
2
%)
k=
0
O
o
O
=
)
O
<
I
L
|_
o
Z
S
<
Z
=
n

Database System Concepts - 6! Edition 29.10 ©Silberschatz, Korth and Sudarshan

Handling of Bucket Overflows (Cont.)

m Overflow chaining — the overflow buckets of a given bucket are chained together in a linked list
m Above scheme is called closed hashing

An alternative, called open hashing, which does not use overflow buckets, is not suitable for
database applications

[o0]

—

o

N

S

<

[

©

-

5

o

[@)]

©

©

e

X

=

@ bucket 0
a)

o

o

9

o

S bucket 1 > >
[&]

>

»

=

a overflow buckets for bucket 1
S

s bucket 2
8)

o)

z

|

Ll

|_

o

=z

s bucket 3
<

z

=

(7))

Database System Concepts - 6! Edition 29.11 ©Silberschatz, Korth and Sudarshan

Hash Indices

m Hashing can be used not only for file organization, but also for index-structure creation

m A hash index organizes the search keys, with their associated record pointers, into a hash file
structure

m Strictly speaking, hash indices are always secondary indices

if the file itself is organized using hashing, a separate primary hash index on it using the
same search-key is unnecessary

However, we use the term hash index to refer to both secondary index structures and hash
organized files

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.12 ©Silberschatz, Korth and Sudarshan

oo
—
o
N
S
<
c
@
-
5
o
o
o
©
=
X
E
%)
©
(@]
o
o
S
o
S
o
S
17
=
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

Example of Hash Index

Hash index on instructor, on attribute 1D
Computed by adding the digits modulo 8

bucket 0

76766 | —

bucket 1

45565

76543

bucket 2

22222 76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. 65000

bucket 3 45565 | Katz Comp. Sci. 75000

10101 83821 | Brandt Comp. Sci. 92000
98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000

bucket 4 76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000

bucket 5 22222 | Einstein Physics 95000

15151 33465 | Gold Physics 87000

334|56— /

bucket 6 /

83821
[]

bucket 7

12121 | —— °

32343 T

29.13

©Silberschatz, Korth and Sudarshan

Deficiencies of Static Hashing

®m |n static hashing, function h maps search-key values to a fixed set of B of bucket addresses.
Databases grow or shrink with time

If initial number of buckets is too small, and file grows, performance will degrade due to too
much overflows

If space is allocated for anticipated growth, a significant amount of space will be wasted
initially (and buckets will be underfull).

If database shrinks, again space will be wasted

® One solution: periodic re-organization of the file with a new hash function
Expensive, disrupts normal operations

m Better solution: allow the number of buckets to be modified dynamically

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.14 ©Silberschatz, Korth and Sudarshan

DYNAMIC HASHING

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

29.15

Static Hashing
Dynamic Hashing
Comparison of
Ordered Indexing
and Hashing
Bitmap Indices

PPD

©Silberschatz, Korth and Sudarshan

Dynamic Hashing

® Good for database that grows and shrinks in size

®m Allows the hash function to be modified dynamically

m Extendable hashing — one form of dynamic hashing
Hash function generates values over a large range — typically b-bit integers, with b = 32
At any time use only a prefix of the hash function to index into a table of bucket addresses
Let the length of the prefix be i bits, 0 <i<32

» Bucket address table size = 2. Initially i = 0
» Value of i grows and shrinks as the size of the database grows and shrinks
Multiple entries in the bucket address table may point to a bucket (why?)

Thus, actual number of buckets is < vl
» The number of buckets also changes dynamically due to coalescing and splitting of buckets

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.16 ©Silberschatz, Korth and Sudarshan

PPD

General Extendable Hash Structure

. hash prefix

S : i,

S i

< -

5 00.. /

= 01.. :

2 bucket 1
s 10.. . :

~ 1

lE. 11.. \\

E bucket 2
% 13

3

8

§ bucket address table bucket 3
z []

:

Z In this structure, i, = i; =i, whereas i, =i—1
<

§ Decode i; number of bits to find the record in bucket j. i; <= 1.
n

Database System Concepts - 6! Edition 29.17 ©Silberschatz, Korth and Sudarshan

— -_J‘
i I

Use of Extendable Hash Structure

® Each bucket j stores a value i

All the entries that point to the same bucket have the same values on the first i; bits
® To locate the bucket containing search-key K;

Compute h(K)) = X

Use the first i high order bits of X as a displacement into bucket address table, and follow the
pointer to appropriate bucket

® To insert a record with search-key value K;
Follow same procedure as look-up and locate the bucket, say |
If there is room in the bucket j insert record in the bucket
Else the bucket must be split and insertion re-attempted (next slide)
» Overflow buckets used instead in some cases (will see shortly)

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 29.18 ©Silberschatz, Korth and Sudarshan

Insertion in Extendable Hash Structure (Cont)

To split a bucket j when inserting record with search-key value K,

m Ifi>i (more than one pointer to bucket j)
Allocate a new bucket z, and seti; =1, = (i + 1)
Update the second half of the bucket address table entries originally pointing to |, to point to z
Remove each record in bucket j and reinsert (in j or z)

Recompute new bucket for K; and insert record in the bucket (further splitting is required if the
bucket is still full)

m Ifi= ij (only one pointer to bucket j)

If i reaches some limit b, or too many splits have happened in this insertion, create an
overflow bucket

Else
» Increment i and double the size of the bucket address table
» Replace each entry in the table by two entries that point to the same bucket
» Recompute new bucket address table entry for K;. Now i > i; so use the first case above

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.19 ©Silberschatz, Korth and Sudarshan

Deletion in Extendable Hash Structure

® To delete a key value,
locate it in its bucket and remove it

The bucket itself can be removed if it becomes empty (with appropriate updates to the
bucket address table)

Coalescing of buckets can be done (can coalesce only with a “buddy” bucket having same

value of ij and same ij —1 prefix, if it is present)

Decreasing bucket address table size is also possible

» Note: decreasing bucket address table size is an expensive operation and should be
done only if number of buckets becomes much smaller than the size of the table

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.20 ©Silberschatz, Korth and Sudarshan

Use of Extendable Hash Structure: Example

dept_name h(dept_name)

Biology 0010 1101 1111 1011 0010 1100 0011 0000
Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010
Music 0011 0101 1010 0110 1100 1001 1110 1011

Physics 1001 1000 0011 1111 1001 1100 0000 0001

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.21 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

2 Finance 1010 0011 1010 0000 1100 01101001 1111
S History 11000111 11101101 1011 1111 0011 1010
e Music 0011 0101 1010 0110 1100 1001 1110 1011
<¢ ® Initial Hash structure; bucket size = 2 Physics 1001 1000 0011 1111 1001 1100 0000 0001
©

5

>

© .

5 hash prefix

4

= 0 0

%

o

o f

D- S

IS

x

o

S bucket address table

g bucket 1

3

8 76766 | Crick Biology 72000

= 10101 | Srinivasan | Comp. Sci. 65000

8 45565 | Katz Comp. Sci. | 75000

= 83821 | Brandt Comp. 5ci. 92000

u‘"J { 98345 | Kim Elec. Eng. | 80000

3 m Insert “Mozart”, “Srinivasan”, and “Wu” records s T 500

3 {32343 | ElSaid History 60000

Z 58583 | Califieri | History 62000

x 15151 | Mozart | Music 40000

= 22222 | Einstein | Physics 95000

n 33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.22 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010

_ _ o Music 0011 0101 1010 0110 1100 1001 1110 1011

m Hash structure after insertion of “Mozart”, “Srinivasan”, Physics 1001 1000 0011 1111 1001 1100 0000 0001

and “Wu” records

hash prefix
1 1

] __— *|15151|Mozart |Music |40000

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

bucket address table 1
o ¢ . | 76766 | Crick Biology 72000
10101 |Srinivasan|Comp. Sci.|90000 10701 | Srinivasan | Comp. 55 | 65000
. 45565 | Katz Comp. Sci. | 75000
12121 [Wu Finance |90000 783821 | Brandt c0m§. Sci. | 92000
1 98345 | Kim Elec. Eng. 80000
12121 | Wu Finance 90000
76543 | Singh Finance 80000
: : | 32343 | ElSaid | History 60000
Hm Insert Einstein record | 58583 | Califieri | History 62000
1 15151 | Mozart Music 40000
22222 | Einstein Physics 95000
33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.23 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

© Finance 1010 0011 1010 0000 1100 0110 1001 1111

= History 11000111 1110 1101 1011 1111 0011 1010

S m Hash str re after insertion of Einstein recor ,

g " iosh smuchre aflerinserion of Enstei record T T

- . ysics

g hash prefix

5 1

S 2

: 7_\ 15151 {Mozart | Music 40000

=

5 _

[a)

o

o .

o 2

E -1

g 12121 Wu Finance |90000

= bucket address table . . .

g 22222| Einstein | Physics | 95000

3

8 [76766 | Crick Biology 72000

s 2 1 10101 | Srinivasan | Comp. Sci. 65000

8 | 45565 | Katz Comp. Sci. | 75000

z | 83821 | Brandt Comp. 5ci. 92000

— 111 2 1 98345 | Kim Elec. Eng. 80000

L 10101|Srinivasan|Comp. Sci.| 65000 12121 [wWu Finance 90000

% 76543 | Singh Finance 80000

Z 32343 | ElSaid | History 60000

§ 1 58583 | Califieri History 62000
. 1 15151 | Mozart Musi 40000

< m Insert Gold and El Said records 2225 [Einstein | Physics | 95000

n 1 33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.24 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

© .]] Finance 1010 0011 1010 0000 1100 0110 1001 1111
2 ® Hash structure after insertion of Gold and El Said records History 1100 0111 1110 1101 1011 1111 0011 1010
< Music 0011 0101 1010 0110 1100 1001 11101011
<é 1 Physics 1001 1000 0011 1111 1001 1100 0000 0001
©
I hash prefi .
= ;‘S pretx 15151 | Mozart | Music 40000
5
g —
=
§ — 3
a — 22222 | Einstein | Physics | 95000 ®m Insert Katz record
£ — 33456 | Gold Physics 87000
a :
0 ~ 12121 | Wu Finance 90000 o Biology T
s - 1 10101 | Srinivasan | Comp. Sci. 65000
8 | 45565 | Katz Comp. Sci. | 75000
> | 83821 | Brandt | Comp. Sci. | 92000
m bucket addressﬂ) 126345 || Kim B N (I
[1 12121 | Wu Finance 90000
% |_76543 | Singh Finance 80000
- 10101 | Srinivasan|Comp. Sci.| 65000 s T (teae a0
. . 1 15151 | Mozart Music 40000
< 32343 | El Said History 60000 2239 | Einstein | Physics 5566
n 33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.25 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

3 Hash structure after insertion of Katz record E?imce }[1’(1]3 gfl’ﬂ i(ﬁg ‘1](118(1’ 1(13(1’ (113(11 (1)3(1’} }{1)}(1)
« istory
= 1 Music 0011 0101 1010 0110 1100 1001 1110 1011
< . Physics 1001 1000 0011 1111 1001 1100 0000 0001
E 15151 | Mozart | Music 40000
. hash prefix
S 3
g — 3
X
= — 22222 | Einstein | Physics | 95000
2 : . e .
3 33456 Gold | Physics | 87000 m Insert Singh, Califieri, Crick,
o
= — 3 Brandt record
o —_—
S 112121 Wu Finance | 90000
8 _
8 3 1 76766 Ctii-:_k Biology ‘ 72000
3 bucket address table 32343 | ElSaid | History 60000 j ;g;gé Zrtzwasan ggzg gg ?ﬁ%
o 83821 | Brandt | Comp.5c. | 92000
m 98345 | Kim Elec. Eng. 80000
[1 12121 | Wu Finance 90000
% 3 [76543 | Singh Finance 80000
3 [32343 | ElSaid | History 60000
S 10101 |Srinivasan| Comp. Sci. | 65000 |-2508 | Califieri | History | 62000
= 45565 |Katz Comp. Sci. | 75000 {22222 | Einstein__| Physics 95000
1 33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.26 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

2) Finance 1010 0011 1010 0000 1100 0110 1001 1111
S History 11000111 1110 1101 1011 1111 0011 1010
= 15151 | Mozart | Music 40000 Music 0011 0101 1010 0110 1100 1001 1110 1011
< 76766 | Crick | Biology | 72000 Physics 1001 1000 0011 1111 1001 1100 0000 0001
©
5 i : :
S hash prefix 3 ®m Hash structure after insertion of Singh,
g 3 22222 | Einstein | Physics | 95000 Califieri, Crick, Brandt records
E — 33456 | Gold Physics 87000
%‘ R
(m)
& - 3
e — 12121 | Wu Finance | 90000
E — 76543 | Singh Finance 80000 i
5] ® Insert Kim record
E - 3
8 _Y
S ~ 32343 | El Said | History 60000 [76766 | Crick Biology 72000
= cee - . 1 10101 | Srinivasan | Comp. Sci. 65000
Q bucket address table 58583 | Califieri | History 62000 | 45565 | Katz Comp. Sci. | 75000
S 83821 | Brandt | Comp. 5ci. | 92000
u_u'J { 98345 | Kim Elec. Eng. | 80000
- 3 12121 | Wu Finance 90000
. ; ; | 76543 | Singh Finance 80000
; 10101 [Srinivasan|Comp. Sci. | 65000 | _[83821] Brandt | Comp.Sci.[92000| 355 [riesa History 60000
S 45565 |Katz Comp. Sci. |75000 |-2508 | Califieri | History | 62000
= 22222 | Einstein | Physics 95000
n 33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.27 ©Silberschatz, Korth and Sudarshan

dept_name h(dept_name)

EX am p | e (CO Nt) Biology 0010 1101 1111 1011 0010 1100 0011 0000

Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101

) Elec. Eng. 0100 0011 1010 1100 1100 01101101 1111
2 Finance 1010 0011 1010 0000 1100 0110 1001 1111
S 15151 | Mozart | Music 40000 History 11000111 1110 1101 1011 1111 0011 1010
s 76766 | Crick | Biology 72000 Music 0011 0101 1010 0110 1100 1001 1110 1011
< Physics 1001 1000 0011 1111 1001 1100 0000 0001
; ;
S : . .
S hash prefix %345| Kim | Elec Eng. | 80000 B Hash structure after insertion
g 3 of Kim record
= — ;
3 — 22222| Einstein | Physics 95000
& f—, 33456 | Gold Physics 87000
- —
@ - 3
§ ___/r 12121 | Wu Finance 90000
= 76543 | Singh Finance 80000
< ~
&
8 bucket address table 3 76766 | Crick Biology 72000
e 58583 | Califieri | History | 62000 [83821 [Brandt | Comp.Sa. | 92000
Ll_l'J 98345 | Kim Elec. Eng. 80000
[3 12121 | Wu Finance 90000
% 76543 | Singh Finance 80000
= 10101 |Srinivasan| Comp. Sci. | 65000 | | 83821| Brandt | Comp. Sci. | 92000 | 32343 | ElSaid | History 60000
< - | 58583 | Califieri History 62000
: 45565 |Katz Comp. Sci. | 75000 1 15151 | Mozart Music 40000
= 22222 | Einstein | Physics 95000
n 33465 | Gold Physics 87000

Database System Concepts - 6! Edition 29.28 ©Silberschatz, Korth and Sudarshan

Extendable Hashing vs. Other Schemes

®m Benefits of extendable hashing:
Hash performance does not degrade with growth of file
Minimal space overhead
B Disadvantages of extendable hashing
Extra level of indirection to find desired record
Bucket address table may itself become very big (larger than memory)
» Cannot allocate very large contiguous areas on disk either
» Solution: B*-tree structure to locate desired record in bucket address table
Changing size of bucket address table is an expensive operation
® Linear hashing is an alternative mechanism
Allows incremental growth of its directory (equivalent to bucket address table)
At the cost of more bucket overflows

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.29 ©Silberschatz, Korth and Sudarshan

PPD

« Static Hashing

e Dynamic Hashing

« Comparison of
Ordered Indexing
and Hashing

« Bitmap Indices

COMPARATIVE SCHEMES

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 29.30 ©Silberschatz, Korth and Sudarshan

Comparison of Ordered Indexing and Hashing

Cost of periodic re-organization
Relative frequency of insertions and deletions
Is it desirable to optimize average access time at the expense of worst-case access time?

Expected type of queries:
Hashing is generally better at retrieving records having a specified value of the key
If range queries are common, ordered indices are to be preferred
®m In practice:
PostgreSQL supports hash indices, but discourages use due to poor performance
Oracle supports static hash organization, but not hash indices
SQLServer supports only B*-trees

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.31 ©Silberschatz, Korth and Sudarshan

BITMAP INDICES

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

29.32

Static Hashing
Dynamic Hashing
Comparison of
Ordered Indexing
and Hashing
Bitmap Indices

PPD

©Silberschatz, Korth and Sudarshan

Bitmap Indices

B Bitmap indices are a special type of index designed for efficient querying on multiple keys
B Records in a relation are assumed to be numbered sequentially from, say, 0
Given a number n it must be easy to retrieve record n
Particularly easy if records are of fixed size
® Applicable on attributes that take on a relatively small number of distinct values
E.g. gender, country, state, ...

E.g. income-level (income broken up into a small number of levels such as 0-9999,
10000-19999, 20000-50000, 50000- infinity)

® A bitmap is simply an array of bits

[e6}
—
o
N
S
<
c
S
kap]
5
Q.
()]
©
<
<
¥
=
2
©
a)
o
o
S
a
S
O
=
®
k=
)
8]
o
O
=
)
O
Z
—
|
|_
o
z
S
<
Z
=
7

Database System Concepts - 6! Edition 29.33 ©Silberschatz, Korth and Sudarshan

record
number

0
1
2

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018 | /' g
Uy WY,
i Lo

Database System Concepts - 6! Edition

Bitmap Indices (Cont.)

Bitmap has as many bits as records

Bitmaps for gender
ID gender | income_level m 10010
76766 | m L1 ¢ 01101
22222 f L2
12121 f L1
15151 | m L4
58583 f 13

29.34

L1

L3

®m [n its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute

In a bitmap for value v, the bit for a record is 1 if the record has the value v for the attribute,
and is O otherwise

Bitmaps for
income_level

10100

01000

00001

00010

00000

©Silberschatz, Korth and Sudarshan

Bitmap Indices (Cont.)

® Bitmap indices are useful for queries on multiple attributes
not particularly useful for single attribute queries

® Queries are answered using bitmap operations
Intersection (and)
Union (or)
Complementation (not)

m Each operation takes two bitmaps of the same size and applies the operation on corresponding
bits to get the result bitmap

E.g. 100110 AND 110011 =100010

100110 OR 110011 =110111
NOT 100110 =011001

Males with income level L1: 10010 AND 10100 = 10000
» Can then retrieve required tuples
» Counting number of matching tuples is even faster

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 29.35 ©Silberschatz, Korth and Sudarshan

— -_J‘
i I

Bitmap Indices (Cont.)

®m Bitmap indices generally very small compared with relation size
E.g. if record is 100 bytes, space for a single bitmap is 1/800 of space used by relation
» If number of distinct attribute values is 8, bitmap is only 1% of relation size
®m Deletion needs to be handled properly
Existence bitmap to note if there is a valid record at a record location
Needed for complementation
» not(A=v): (NOT bitmap-A-v) AND ExistenceBitmap
® Should keep bitmaps for all values, even null value
To correctly handle SQL null semantics for NOT(A=v):
» intersect above result with (NOT bitmap-A-Null)

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 29.36 ©Silberschatz, Korth and Sudarshan

Efficient Implementation of Bitmap Operations

B Bitmaps are packed into words; a single word and (a basic CPU instruction) computes and of
32 or 64 bits at once

E.g. 1-million-bit maps can be and-ed with just 31,250 instruction
m Counting number of 1s can be done fast by a trick:

Use each byte to index into a precomputed array of 256 elements each storing the count of
1s in the binary representation

» Can use pairs of bytes to speed up further at a higher memory cost
Add up the retrieved counts

Bitmaps can be used instead of Tuple-ID lists at leaf levels of B*-trees, for values that have a
large number of matching records

Worthwhile if > 1/64 of the records have that value, assuming a tuple-id is 64 bits
Above technique merges benefits of bitmap and B*-tree indices

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018
H

Database System Concepts - 6! Edition 29.37 ©Silberschatz, Korth and Sudarshan

Module Summary

/' |
| ,

I

iz

m Explored various hashing schemes — Static and Dynamic Hashing
m Compared Ordered Indexing and Hashing
®m Studies the use of Bitmap Indices for fast access of columns with limited number of distinct values

SWAYAM: NPTEL-NOC MOOC:s Instructor: Prof. P P Das, IIT Kharagpur. Jan-Apr, 2018

Database System Concepts - 6! Edition 29.38 ©Silberschatz, Korth and Sudarshan

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

PPD

Instructor and TAS

Name

Partha Pratim Das, Instructor
Srijoni Majumdar, TA
Himadri B G S Bhuyan, TA
Gurunath Reddy M

Mail Mobile
ppd@cse.iitkgp.ernet.in 9830030880

majumdarsrijoni@gmail.com 9674474267
himadribhuyan@gmail.com 9438911655
mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from
with kind permission of the authors.

Edited and new slides are marked with “PPD".

29.39

©Silberschatz, Korth and Sudarshan

http://db-book.com/

Database Management Systems

Module 30: Indexing and Hashing/5:
Index Design

Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ernet.in

Srijoni Majumdar
Himadri B G S Bhuyan
Gurunath Reddy M

Database System Concepts, 6! Ed.
©Silberschatz, Korth and Sudarshan

http://www.db-book.com/

PPD

Module Recap

Static Hashing
Dynamic Hashing
Comparison of Ordered Indexing and Hashing

Bitmap Indices

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 30.2 ©Silberschatz, Korth and Sudarshan

PPD

Module Objectives

B To discuss how Indexes can be created in SQL
m To deliberate on good index designs in terms of Guidelines for Indexing

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 30.3 ©Silberschatz, Korth and Sudarshan

PPD

Module Qutline

B Index Definition in SQL
®m Guidelines for Indexing

o)
—
o
N
S
<
c
@
S
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 30.4 ©Silberschatz, Korth and Sudarshan

PPD

* Index Definition in
SQL

* Guidelines for
Indexing

INDEX DEFINITION IN SQL

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 30.5 ©Silberschatz, Korth and Sudarshan

PPD

Index Definition in SQL

B Create an index

create index <index-name> on <relation-name>
(<attribute-list>)

E.g.. create index b-index on branch(branch_name)

m Use create unique index to indirectly specify and enforce the condition that the search key is a
candidate key

Not really required if SQL unique integrity constraint is supported — it is preferred
® To drop an index
drop index <index-name>
® Most database systems allow specification of type of index, and clustering
You can also create an index for a cluster
You can create a composite index on multiple columns up to a maximum of 32 columns

» A composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.6 ©Silberschatz, Korth and Sudarshan

PPD

Indexing Examples

m Create an index for a single column, to speed up queries that test that column:
CREATE INDEX emp_ename ON emp_tab(ename);
m Specify several storage settings explicitly for the index:
CREATE INDEX emp_ename ON emp_tab(ename)
TABLESPACE users STORAGE (INITIAL 20K NEXT 20k PCTINCREASE 75)
PCTFREE 0 COMPUTE STATISTICS;
m Create index on two columns, to speed up queries that test either the first column or both columns:
CREATE INDEX emp_ename ON emp_tab(ename, empno) COMPUTE STATISTICS;

®m |[f a query is going to sort on the function UPPER(ENAME), an index on the ENAME column itself would
not speed up this operation, and it might be slow to call the function for each result row

A function-based index precomputes the result of the function for each column value, speeding up
queries that use the function for searching or sorting:

CREATE INDEX emp_upper_ename ON emp_tab(UPPER(ename)) COMPUTE STATISTICS;

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.7 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

PPD

Bitmap Index in SQL

M create bitmap index <index-name> on <relation-name>(<attribute-list>)
m Example:
Student (Student_ID, Name, Address, Age, Gender, Semester)
CREATE BITMAP INDEX ldx_Gender ON Student (Gender);
CREATE BITMAP INDEX ldx_ Semester ON Student (Semester);

STUDENT SEMESTER

STUDENT _ID |STUDENT NAME |ADDRESS AGE GENDER |SEMESTER FirstRow 2-¢ Raw 11 100
100(Joseph Alaiedon Township 20| M 1 /-)//_" 3rd Row 20 010
101 | Allen Fraser Township 21|F 1 - - __{;—::thﬂﬂw 30 00 0
102/ Chris Clinton Township 20(F 2 Eg{"” 1 000 40 001
103|patty Troy 22[F 4 == | 0 111

SELECT * FROM Student WHERE Gender = ‘F’ AND Semester =4;
» AND O 11 1with 00O 1to getthe result

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.8 ©Silberschatz, Korth and Sudarshan

Source: https://www.tutorialcup.com/dbms/bitmap-indices.htm

Multiple-Key Access

® Use multiple indices for certain types of queries
® Example:
select ID
from instructor
where dept_name = “Finance” and salary = 80000
B Possible strategies for processing guery using indices on single attributes:

Use index on dept_name to find instructors with department name Finance; test
salary = 80000

Use index on salary to find instructors with a salary of 80000; test dept_name =
“Finance”

Use dept_name index to find pointers to all records pertaining to the “Finance”
department. Similarly use index on salary. Take intersection of both sets of
pointers obtained

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.9 ©Silberschatz, Korth and Sudarshan

Indices on Multiple Keys

m Composite search keys are search keys containing more than one attribute
E.g. (dept_name, salary)

®m |exicographic ordering: (a,, a,) < (b,, b,) if either
a, <b,, or
a,=b, and a, <b,

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 30.10 ©Silberschatz, Korth and Sudarshan

Indices on Multiple Attributes

Suppose we have an index on combined search-key
(dept_name, salary)

m With the where clause
where dept_name = “Finance” and salary = 80000
the index on (dept_name, salary) can be used to fetch only records that satisfy both conditions.

Using separate indices in less efficient — we may fetch many records (or pointers) that satisfy
only one of the conditions

m Can also efficiently handle
where dept_name = “Finance” and salary < 80000

®m But cannot efficiently handle
where dept_name < “Finance” and balance = 80000

May fetch many records that satisfy the first but not the second condition

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.11 ©Silberschatz, Korth and Sudarshan

PPD

Privileges Required to Create an Index

® When using indexes in an application, you might need to request that the DBA grant privileges
or make changes to initialization parameters

® To create a new index
You must own, or have the INDEX object privilege for, the corresponding table

The schema that contains the index must also have a quota for the tablespace intended to
contain the index, or the UNLIMITED TABLESPACE system privilege

To create an index in another user's schema, you must have the CREATE ANY INDEX
system privilege

®m Function-based indexes also require the QUERY _REWRITE privilege, and that the
QUERY_REWRITE_ENABLED initialization parameter to be set to TRUE

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.12 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

o)
-
o
Y
Ny
o
<
c
@
=
=
o
(o)
o
G
c
X
=
)
@
a)
(a
o
w
S
o
i
o
2
o
S
S
=
%
£
0
Q
o
o
=
Q
o
<
1
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

30.13

PPD

Index Definition in
SQL

Guidelines for
Indexing

GUIDELINES FOR INDEXING

©Silberschatz, Korth and Sudarshan

PPD

Guidelines for Indexing

® In Modules 16 to 20 (Week 4), we have studied various issues for a proper design of a relational
database system. This focused on:

Normalization of Tables leading to
Reduction of Redundancy to minimize possibilities of Anomaly
Easier adherence to constraints (various dependencies)
Efficiency of access and update — a better normalized design often gives better performance

® The performance of a database system, however, is also significantly impacted by the way the data is
physically organized and managed. These are done through:

Indexing and Hashing

® While normalization and design are startup time activities that are usually performed once at the
beginning (and rarely changed later), the performance behavior continues to evolve as the database
IS used over time. Hence we need to continually:

Collect statistics about data (of various tables) to learn of the patterns, and
Adjust the indexes on the tables to optimize performance

B There is no sound theory that determines optimal performance. Rather, we take a quick look into a
few common guidelines that can help you keep your database agile in its behavior

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.14 ©Silberschatz, Korth and Sudarshan

Guidelines for Indexing

B Rule 0: Indexes lead to Access — Update Tradeoff
Every query (access) results in a ‘search’ on the underlying physical data structures
» Having specific index on search field can significantly improve performance

Every update (insert / delete / values update) results in update of the index files — an
overhead or penalty for quicker access

» Having unnecessary indexes can cause significant degradation of performance of
various operations

» Index files may also occupy significant space on your disk and / or
» Cause slow behavior due to memory limitations during index computations
Use informed judgment to index!

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.15 ©Silberschatz, Korth and Sudarshan

PPD

Guidelines for Indexing

® Rule 1: Index the Correct Tables
Create an index if you frequently want to retrieve less than 15% of the rows in a large table

» The percentage varies greatly according to the relative speed of a table scan and how
clustered the row data is about the index key

The faster the table scan, the lower the percentage
More clustered the row data, the higher the percentage
Index columns used for joins to improve performance on joins of multiple tables

Primary and unique keys automatically have indexes, but you might want to create an index
on a foreign key

Small tables do not require indexes
» If a query is taking too long, then the table might have grown from small to large

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.16 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

PPD

Guidelines for Indexing

® Rule 2: Index the Correct Columns
Columns with one or more of the following characteristics are candidates for indexing:
Values are relatively unigue in the column
There is a wide range of values (good for regular indexes)
There is a small range of values (good for bitmap indexes)

The column contains many nulls, but queries often select all rows having a value. In this
case, a comparison that matches all the non-null values, such as:

WHERE COL_X > -9.99 *power(10,125) is preferable to WHERE COL_X IS NOT NULL
This is because the first uses an index on COL_X (if COL_X is a numeric column)
Columns with the following characteristics are less suitable for indexing:
There are many nulls in the column and you do not search on the non-null values
LONG and LONG RAW columns cannot be indexed

The size of a single index entry cannot exceed roughly one-half (minus some overhead) of the
available space in the data block

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.17 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

PPD

Guidelines for Indexing

® Rule 3: Limit the Number of Indexes for Each Table
The more indexes, the more overhead is incurred as the table is altered
» When rows are inserted or deleted, all indexes on the table must be updated
» When a column is updated, all indexes on the column must be updated

You must weigh the performance benefit of indexes for queries against the performance
overhead of updates

» If atable is primarily read-only, you might use more indexes; but, if a table is heavily
updated, you might use fewer indexes

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.18 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

Guidelines for Indexing

B Rule 4: Choose the Order of Columns in Composite Indexes
The order of columns in the CREATE INDEX statement can affect performance
Put the column expected to be used most often first in the index

has about 1000 parts. Suppose VENDOR_PARTS is commonly queried as:

CREATE INDEX ind_vendor_id ON vendor_parts (part_no, vendor _id);
Composite indexes speed up queries that use the leading portion of the index:

With only 5 distinct values, a separate index on VENDOR__ID does not help

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.19

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

PPD

Table YENDOR PARTS

VERMDID | PART MO | UNIT COST
1012 10— 25
1012 10— et 11
1012 457 4 45
1040 10440 27
1010 457 510
1220 08-300 1.33
1012 0a-300 1.19
124 457 5.2

You can create a composite index (using several columns), and the same index
can be used for queries that reference all of these columns, or just some of them

For the VENDOR_PARTS table, assume that there are 5 vendors, and each vendor

SELECT * FROM vendor_parts WHERE part_no = 457 AND vendor_id = 1012;
Create a composite index with the most selective (with most values) column first

So queries with WHERE clauses using only PART _NO column also runs faster

©Silberschatz, Korth and Sudarshan

PPD

Guidelines for Indexing

B Rule 5: Gather Statistics to Make Index Usage More Accurate

The database can use indexes more effectively when it has statistical information about the
tables involved in the queries

» Gather statistics when the indexes are created by including the keywords COMPUTE
STATISTICS in the CREATE INDEX statement

» As data is updated and the distribution of values changes, periodically refresh the
statistics by calling procedures like (in Oracle):

DBMS_STATS.GATHER_TABLE_STATISTICS and
DBMS_STATS.GATHER_SCHEMA_STATISTICS

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.20 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

PPD

Guidelines for Indexing

B Rule 6: Drop Indexes That Are No Longer Required
You might drop an index if:

It does not speed up queries. The table might be very small, or there might be many
rows in the table but very few index entries

The queries in your applications do not use the index
The index must be dropped before being rebuilt

When you drop an index, all extents of the index's segment are returned to the containing
tablespace and become available for other objects in the tablespace

Use the SQL command DROP INDEX to drop an index. For example, the following
statement drops a specific named index:

DROP INDEX Emp_ename;
If you drop a table, then all associated indexes are dropped

To drop an index, the index must be contained in your schema or you must have the DROP
ANY INDEX system privilege

[e6}
—
o
N
=1
<
c
5
kap]
5
[oX
(o)
©
S
<
¥
=
2
<
a
o
o
S
a
S
O
=
®
£
)
O
®)
©)
=
)
®)
<
-
m
|_
o
2
=
<
Z
=
7%

Database System Concepts - 6! Edition 30.21 ©Silberschatz, Korth and Sudarshan

Source: https://docs.oracle.com/cd/B10500_01/appdev.920/a96590/adg06idx.htm

Module Summary

B Learnt to create Indexes in SQL
®m [ntroduced a few rules for good index

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition 30.22 ©Silberschatz, Korth and Sudarshan

o)
—
o
N
S
<
c
@
-
5
o
o
o
©
c
X
E
)
©
(@]
o
o
S
o
S
o
S
17
£
0
O
®)
®)
=
®)
®)
<
—
L
|_
o
Z
=
<
<
=
n

Database System Concepts - 6! Edition

PPD

Instructor and TAS

Name

Partha Pratim Das, Instructor
Srijoni Majumdar, TA
Himadri B G S Bhuyan, TA
Gurunath Reddy M

Mail Mobile
ppd@cse.iitkgp.ernet.in 9830030880

majumdarsrijoni@gmail.com 9674474267
himadribhuyan@gmail.com 9438911655
mgurunathreddy@gmail.com 9434137638

Slides used in this presentation are borrowed from
with kind permission of the authors.

Edited and new slides are marked with “PPD".

30.23

©Silberschatz, Korth and Sudarshan

http://db-book.com/

	Module 26
	Module 26: Indexing and Hashing/1: �Indexing/1
	Week 05 Recap
	Module Objectives
	Module Outline
	Basic Concepts of Indexing
	Search Records
	Basic Concepts
	Index Evaluation Metrics
	Ordered Indices
	Ordered Indices
	Dense Index Files
	Dense Index Files (Cont.)
	Sparse Index Files
	Sparse Index Files (Cont.)
	Secondary Indices Example
	Primary and Secondary Indices
	Multilevel Index
	Multilevel Index (Cont.)
	Index Update: Deletion
	Index Update: Insertion
	Secondary Indices
	Module Summary
	Instructor and TAs

	Module 27
	Module 27: Indexing and Hashing/2: �Indexing/2
	Module Recap
	Module Objectives
	Module Outline
	Balanced Binary Search Trees
	Search Data Structures
	Search Data Structures
	Balanced Binary Search Trees
	2-3-4 Tree
	2-3-4 Trees
	2-3-4 Trees
	2-3-4 Trees: Search
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Insert: Example
	2-3-4 Trees: Delete
	2-3-4 Trees
	2-3-4 Trees
	Module Summary
	Instructor and TAs

	Module 28
	Module 28: Indexing and Hashing/3: �Indexing/3
	Module Recap
	Module Objectives
	Module Outline
	B+-Tree Index Files
	B+-Tree Index Files
	Example of B+-Tree
	B+-Tree Index Files (Cont.)
	B+-Tree Node Structure
	Leaf Nodes in B+-Trees
	Non-Leaf Nodes in B+-Trees
	Example of B+-tree
	Observations about B+-trees
	Queries on B+-Trees
	Handling Duplicates
	Handling Duplicates
	Queries on B+-Trees (Cont.)
	Updates on B+-Trees: Insertion
	Updates on B+-Trees: Insertion (Cont.)
	B+-Tree Insertion
	B+-Tree Insertion
	Insertion in B+-Trees (Cont.)
	Examples of B+-Tree Deletion
	Examples of B+-Tree Deletion (Cont.)
	Example of B+-tree Deletion (Cont.)
	Updates on B+-Trees: Deletion
	Updates on B+-Trees: Deletion
	B+-Tree File Organization
	B+-Tree File Organization (Cont.)
	Other Issues in Indexing
	Indexing Strings
	B-Tree Index Files
	B-Tree Index Files
	B-Tree Index File Example
	B-Tree Index Files (Cont.)
	Module Summary
	Instructor and TAs

	Module 29
	Module 29: Indexing and Hashing/4: �Hashing
	Module Recap
	Module Objectives
	Module Outline
	Static Hashing
	Static Hashing
	Example of Hash File Organization
	Example of Hash File Organization
	Hash Functions
	Handling of Bucket Overflows
	Handling of Bucket Overflows (Cont.)
	Hash Indices
	Example of Hash Index
	Deficiencies of Static Hashing
	Dynamic Hashing
	Dynamic Hashing
	General Extendable Hash Structure
	Use of Extendable Hash Structure
	Insertion in Extendable Hash Structure (Cont)
	Deletion in Extendable Hash Structure
	Use of Extendable Hash Structure: Example
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Example (Cont.)
	Extendable Hashing vs. Other Schemes
	Comparative Schemes
	Comparison of Ordered Indexing and Hashing
	Bitmap Indices
	Bitmap Indices
	Bitmap Indices (Cont.)
	Bitmap Indices (Cont.)
	Bitmap Indices (Cont.)
	Efficient Implementation of Bitmap Operations
	Module Summary
	Instructor and TAs

	Module 30
	Module 30: Indexing and Hashing/5: �Index Design
	Module Recap
	Module Objectives
	Module Outline
	Index definition in SQL
	Index Definition in SQL
	Indexing Examples
	Bitmap Index in SQL
	Multiple-Key Access
	Indices on Multiple Keys
	Indices on Multiple Attributes
	Privileges Required to Create an Index
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Guidelines for Indexing
	Module Summary
	Instructor and TAs

